Secular evolution and stability of rings around rotationally asymmetrical bodies. Revisiting the problem

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A method has been developed for studying the secular evolution and stabilization of the shape of rings in small celestial bodies that do not have shepherd satellites. A model of a compound ring consisting of two close, generally non-coplanar elliptical Gaussian rings has been constructed. The self-gravitation of the ring is taken into account through the mutual gravitational energy of the boundary rings. The function is presented as a series with an accuracy of up to the 4th power of small eccentricities and mutual inclination of the rings. The secular evolution of a compound ring is described by differential equations in special (collective) variables. For rings without a central body (problem 1), a closed system of 8 differential equations is obtained using the mutual energy function. The evolution of rings in the azimuthally averaged potential of a rotating triaxial body is also studied (problem 2); a second system of eight differential equations is derived for it. In both problems, in addition to the general case, two particular ones are considered: i) the case of coplanar elliptical rings, and ii) the case of circular rings with a tilt. The theory is applied to study the recently discovered ring of the dwarf planet Haumea. It is shown that without taking into account self-gravity, the nodal precession time of the Haumea ring is equal to but taking into account the self-gravity of the ring can reduce this period. It is established that self-gravity does indeed contribute to the preservation of the ring shape without invoking the hypothesis of shepherd satellites. Criteria for the preservation of the ring shape are obtained, which made it possible to estimate the interval for the ratio of the ring mass to the mass of Haumea. Taking into account the optical thickness of the ring, it is shown that the Haumea ring with a mass can consist of ice particles of size d00.7÷1 m.

Толық мәтін

Рұқсат жабық

Авторлар туралы

B. Kondratyev

Moscow State University; Sternberg Astronomical Institute, Moscow State University; Central (Pulkovo) Astronomical Observatory, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: work@boris-kondratyev.ru

Faculty of Physics

Ресей, Moscow; Moscow; St. Petersburg

V. Kornoukhov

Moscow State University; Sternberg Astronomical Institute, Moscow State University

Email: work@boris-kondratyev.ru

Faculty of Physics

Ресей, Moscow; Moscow

Әдебиет тізімі

  1. Н. Н. Горькавый, А. М. Фридман Физика планетных колец (М.: Наука, 1995).
  2. D. Bérard, B. Sicardy, M. Assafin, F. Braga-Ribas, J. Camargo, M. R. Vieira, R. Duffard, J. L. Ortiz, C. Snodgrass, E. Jehin, et al., American Astronomical Society, DPS meeting 47, 104.02 (2015).
  3. F. Braga-Ribas, B. Sicardy, J. L. Ortiz, et al., Nature 508, 72 (2014).
  4. J. L. Ortiz, P. Santos-Sanz, B. Sicardy, G. Benedetti-Rossi, D. Bérard, N. Morales, R. Duffard, F. Braga-Ribas, U. Hopp, C. Ries, et al., Nature 550, 7675, 219 (2017).
  5. C. L. Pereira, B. Sicardy, B. E. Morgado, et al., Astron. and Astrophys. 673, L4 (2023).
  6. М. Ф. Субботин Введение в теоретическую астрономию (М.: Наука, 1968).
  7. B. P. Kondratyev, Sol. Sys. Res. 46, № 5, 352 (2012).
  8. P. Goldreich and S. Tremaine, Astron. J. 84, 1638 (1979).
  9. P. Goldreich and S. Tremaine, Annu. Rev. Astron. and Astrophys. 20, 249 (1982).
  10. N. Borderis, P. Goldreich, S. Tremaine, Astron. J. 88, 1560 (1983).
  11. J. R. Touma, S. Tremaine, M. V. Kazandjian, Monthly Not. Roy. Astron. Soc. 394, 1085 (2009).
  12. B. P. Kondratyev, Astrophys. and Space Sci. 361, 169K (2016).
  13. B. P. Kondratyev, V. S. Kornoukhov, Monthly Not. Roy. Astron. Soc. 478. 3159–3176 (2018).
  14. P. Kondratyev, V. S. Kornoukhov, Tech. Phys. 64, № 10, 1395 (2019).
  15. Б. П. Кондратьев, В. С. Корноухов, Астрон. журн. 97, № 5, 408 (2020).
  16. Г. Н. Дубошин Небесная механика. Основные задачи и методы (М.: Наука, 1975).
  17. Б. П. Кондратьев, В. С. Корноухов, Астрон. журн. 97, № 10, 866–872 (2020).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Spherical triangle in the problem of transition to the ecliptic coordinate system. Here ∆i is the angle between the Gauss rings; ∆Ω′ = Ω′2 – Ω′1 is the difference in longitudes of the ascending nodes of the Gauss rings, measured in the plane of the ecliptic; i1 and i2 are the inclinations, respectively, of the first and second Gauss rings to the plane of the ecliptic; ∆ i is the angle between the line of nodes of the i-th ring, lying in the plane of the ecliptic, and the common line of nodes of the two rings.

Жүктеу (52KB)
3. Fig. 2. Graph of the dependence of the ratio of the mass of the Haumea ring m to the mass of Haumea itself M on the difference between the angles of inclination ∆i of the circular boundaries of the Haumea ring.

Жүктеу (75KB)
4. Fig. 3. Precession of the line of nodes of the Haumea ring in the equatorial plane of the central body depending on the difference in the angles of inclination of the boundaries of this ring ∆i. The dashed line indicates the value of the angular velocity without taking into account the self-gravity of the Haumea ring (see formula (45)).

Жүктеу (70KB)
5. Fig. 4. The ratio of the mass of the Haumea ring m to the mass of Haumea itself M depending on the difference in the eccentricities of the boundaries of this ring ∆e, with the maximum arithmetic mean eccentricity of these two boundaries e = emax.

Жүктеу (44KB)

© The Russian Academy of Sciences, 2024