The evolution of the microstructure of Cr16–Ni19 Steel under irradiation in the low enrichment zone of a fast neutron reactor. Formation and development of radiation porosity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Microstructural studies of samples made from various sections of fuel element shells were carried out after irradiation in the low enrichment zone of a fast neutron reactor with a sodium coolant to damaging doses of over 100 dpa. The porosity characteristics of samples irradiated with different rates of generation of atomic displacements selected from sites with different irradiation temperatures are studied. Histograms of the void size distribution are constructed for each sample, which are described by unimodal lognormal distributions. Three types of voids were identified: “small”,“medium-sized” and “large”,and changes in the average size and concentration of voids of each type were traced depending on the irradiation temperature and the rate of generation of atomic displacements.

Full Text

Restricted Access

About the authors

I. A. Portnykh

JSC “Institute of Nuclear Materials”

Author for correspondence.
Email: portnyh_ia@irmatom.ru
Russian Federation, Zarechny, Sverdlovsk region, 624250

V. L. Panchenko

JSC “Institute of Nuclear Materials”

Email: portnyh_ia@irmatom.ru
Russian Federation, Zarechny, Sverdlovsk region, 624250

A. E. Ustinov

JSC “Institute of Nuclear Materials”

Email: portnyh_ia@irmatom.ru
Russian Federation, Zarechny, Sverdlovsk region, 624250

A. V. Kozlov

JSC “Institute of Nuclear Materials”; Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: portnyh_ia@irmatom.ru
Russian Federation, Zarechny, Sverdlovsk region, 624250; Ekaterinburg, 620108

References

  1. Поролло С.И., Конобеев Ю.В., Шулепин С.В. Анализ поведения оболочек твэлов БН-600 из стали 0Х16Н15М3БР при высоком выгорании топлива // Атомная энергия. 2009. Т. 106. № 4. С. 188–194.
  2. Целищев А.В., Агеев В.С., Буданов Ю.П., Иолтуховский А.Г., Митрофанова Н.М., Леонтьева-Смирнова М.В., Шкабура И.А., Забудько Л.М., Козлов А.В., Мальцев В.В., Повстянко А.В. Разработка конструкционной стали для твэлов и ТВС быстрых натриевых реакторов // Атомная энергия. 2010. Т. 108. № 4. С. 217–221.
  3. Митрофанова Н.М., Чурюмова Т.А. Сталь ЭК164 – конструкционный материал оболочек твэлов реакторов БН // ВАНТ. 2019. № 2(98). С. 100–109.
  4. Панченко В.Л., Портных И.А., Устинов А.Е. Эволюция микроструктуры стали типа Cr16–Ni19 при облучении в зоне малого обогащения реактора на быстрых нейтронах. Влияние условий нейтронного облучения на структурно-фазовое состояние // ФММ. 2025. Т. 126. Вып. 1. С. 110–122.
  5. Портных И.А., Козлов А.В., Скрябин Л.А. Размерные характеристики ансамбля радиационных пор в холоднодеформированной стали Х16Н15М2Г, облученной высокими флюенсами нейтронов // Перспективные материалы. 2002. № 2. С. 50–55.
  6. Katz J., Wiedersich H., Chem J. Nucleation of voids in materials supersaturated with vacancies and interstitials // Phys. 1971. V. 55. P. 1414–1425.
  7. Kozlov A.V., Portnykh I.A., Blokhin A.I., Blokhin D.A., Demin N.A. The dependence of critical diameter of void nuclei in ChS68 austenitic steel on temperature of neutron irradiation in the model of formation of helium-vacancy bubbles // Inorganic Mater. Appl. Research. 2013. V. 4. № 3. P. 183–188.
  8. Trinkaus H. Energetics and formation kinetics of helium bubbles in metals // Radiat. Effects. 1983. V. 78. P. 189–211.
  9. Stoller R.E., Odette G.R., Garner F.A., Packan N.H., Kumar A.S. (Eds.) A comparison of the relative importance of helium and vacancy accumulation in void nucleation, in Radiation-Induced Changes in Microstructure / 13th International Symposium, West Conshohocken, PA: ASTM International, 1987. P. 358–370.
  10. Глушкова Н.В., Портных И.А., Козлов А.В. Механизм влияния трансмутационного гелия, нарабатываемого в оболочках твэлов из аустенитной стали ЧС-68 при нейтронном облучении, на образование пор // ФММ. 2009. Т. 108. № 3. С. 276–282.
  11. Блохин А.И., Демин Н.А., Манохин В.Н., Сипачев И.В., Блохин Д.А., Чернов В.М. Расчетный комплекс ACDAM-2.0 для исследований ядерных физических свойств материалов в условиях нейтронного облучения // ВАНТ, сер. “МиНМ”. 2015. Вып. 3(82). С. 81–109.
  12. Mansur L.K., Lee E.H., Maziasz P.J., and Rowcliffe A.P. Control of helium effects in irradiated materials based on the theory and experiments // J. Nuclear Mater. 1986. V. 141–143. P. 633–646.
  13. Kozlov A.V., Portnykh I.A. Vacancy Void Growth Rate as a Function of the Neutron Irradiation Parameters at the Initial Stage of Transient Swelling // Russian Metallurgy (Metally). 2019. V. 2019. № 3. P. 261–267.
  14. Kozlov A.V., Kozlov K.A., Portnykh I.A. The evolution of helium-vacancy bubbles in austenitic steels under neutron irradiation // J. Nuclear Mater. 2021. V. 549. P. 152915.
  15. Козлов А.В., Портных И.А., Исинбаев А.Р. Модель заключительного этапа стадиинестационарного радиационного распухания металлов // ФММ. 2020. Т. 121. № 7. С. 675–681.
  16. Портных И.А., Козлов А.В., Исинбаев А.Р. Прогнозирование развития радиационной пористости в аустенитной стали 07C–16Cr–19Ni–2Mo–Ti–Si–V–P–B, облученной при температурах 715–815 К до повреждающих доз 72–92 сна / Труды XXIX Международной конференции “Радиационная физика твердого тела” (Севастополь 08–13 июля 2019 г.), под редакцией заслуженного деятеля науки РФ, д.ф.-м.н., проф. Бондаренко Г.Г. М.: ФГБНУ “НИИ ПМТ”, 2019. С. 233–244.
  17. Козлов А.В., Портных И.А. Условия достижения стадии стационарного радиационного распухания // ФММ. 2007. Т. 103. № 1. С. 108–112.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Typical distribution of neutron flux density and temperatures of fuel element cladding (#1, #2) over the height of the core.

Download (248KB)
3. Fig. 2. Microstructure of Cr16-Ni19 type steel characteristic of low-temperature irradiation ranges. (a) - areas depleted of large pores near the primary carbonitride precipitates; (b) - line of large pores along the grain boundary (marked by arrows).

Download (278KB)
4. Fig. 3. Small pores in the structure of Cr16-Ni19 type steel: (a) - at the grain boundary; (b) - at intra-grain separations.

Download (353KB)
5. Fig. 4. Typical histogram of pore size distribution in HT1 samples of fuel element cladding made of Cr16-Ni19 type steel (atomic displacement generation rate of 1.1 ∙ 10-6 sleep/s).

Download (255KB)
6. Fig. 5. Characteristics of small (a), medium-sized (b) and large (c) pores in Cr16-Ni19 type steel samples from low-temperature irradiation ranges and integral porosity of the samples (d).

Download (514KB)
7. Fig. 6. Microstructure of Cr16-Ni19 type steel characteristic for medium-temperature irradiation ranges with atomic displacement generation rate of 1.6 ∙ 10-6 sleep/c: (a) - areas free of large pores; (b) - the largest pores at the twin boundaries.

Download (307KB)
8. Fig. 7. Typical histogram of pore size distribution in samples of fuel element cladding made of Cr16-Ni19 steel from the ST2 irradiation range (atomic displacement generation rate of 1.6 ∙ 10-6 sleep/s).

Download (284KB)
9. Fig. 8. Characteristics of small (a), medium-sized (b) and large (c) pores in Cr16-Ni19 type steel samples from mid-temperature irradiation ranges and integral porosity of the samples (d).

Download (512KB)
10. Fig. 9. Microstructure of Cr16-Ni19 type steel characteristic of high-temperature irradiation ranges BT1, BT2: (a) temperature range (540-550)°C, atomic displacement generation rate 1.6 ∙ 10-6 sleep/s; (b) temperature range (560-570)°C, atomic displacement generation rate 1.5 ∙ 10-6 sleep/s.

Download (268KB)
11. Fig. 10. Typical histogram of pore size distribution in samples of fuel element cladding made of Cr16-Ni19 type steel from high-temperature irradiation range BT1 (atomic displacement generation rate 1.6 ∙ 10-6 sleep/s).

Download (215KB)
12. Fig. 11. Characteristics of small (a), medium-sized (b) and large (c) pores in Cr16-Ni19 type steel samples from high-temperature irradiation ranges and integral porosity of the samples (d).

Download (553KB)
13. Fig. 12. Dependences of average size (a) and concentration (b) of small pores on irradiation temperature in samples of fuel rod cladding made of Cr16-Ni19 steel.

Download (338KB)
14. Fig. 13. Dependences of average pore size (a) and concentration (b) of average pore size on irradiation temperature in samples of fuel rod cladding made of Cr16-Ni19 type steel.

Download (296KB)
15. Fig. 14. Dependences of average size (a) and concentration (b) of large pores on irradiation temperature in samples of fuel rod cladding made of Cr16-Ni19 steel.

Download (277KB)
16. Fig. 15. Dependence of the specific volume occupied by pores of different types on the irradiation temperature in Cr16-Ni19 steel.

Download (164KB)
17. Fig. 16. Dependence of specific pore surface area on porosity in samples of fuel rod cladding made of Cr16-Ni19 steel for different irradiation temperature ranges.

Download (217KB)