About the Lack of Controllability in Models of “Naive Mechanics”. Three Exceptional Cases
- Autores: Romanov I.V.1
- 
							Afiliações: 
							- HSE University
 
- Edição: Volume 87, Nº 1 (2023)
- Páginas: 19-25
- Seção: Articles
- URL: https://cardiosomatics.ru/0032-8235/article/view/675183
- DOI: https://doi.org/10.31857/S0032823523010083
- EDN: https://elibrary.ru/HVVMKW
- ID: 675183
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The problem of boundary controllability is considered for a wide class of models, which can be conditionally called “naive mechanics”. It is proved that for all models of “naive mechanics”, except for the three cases, there is no controllability to rest. All these three cases are classical examples of equations, two of which require additional study of the controllability property.
Palavras-chave
Sobre autores
I. Romanov
HSE University
							Autor responsável pela correspondência
							Email: romm1@list.ru
				                					                																			                												                								Russia, Moscow						
Bibliografia
- Gurtin M.E., Pipkin A.C. A general theory of heat conduction with finite wave speeds // Arch. Ration. Mech. Anal., 1968, no. 31, pp. 113–126.
- Il’yushin A.A., Pobedrya B.E., Fundamentals of the Mathematical Theory of Thermoviscoelasticity. Moscow: Nauka, 1970. (in Russian)
- Vlasov V.V., Rautian N.A., Shamaev A.S. Spectral analysis and correct solvability of abstract integro-differential equations arising in thermophysics and acoustics // Contemp. Math. Fundam. Direct., 2011, vol. 39, pp. 36–65.
- Romanov I., Shamaev A. Exact controllability of the distributed system, governed by string equation with memory // J. Dyn.&Control Syst., 2013, vol. 19, no. 4, pp. 611–623.
- Romanov I., Shamaev A. Exact control of a distributed system described by the wave equation with integral memory // J. Math. Sci., 2022, vol. 262, pp. 358–373.
- Vlasov V.V., Rautian N.A. Spectral analysis and representation of solutions of integro-differential equations with fractional exponential kernels // Trans. Moscow Math. Soc., 2019, vol. 80, pp. 169–188.
- Ivanov S., Pandolfi L. Heat equations with memory: Lack of controllability to rest // J. Math. Anal.&Appl., 2009, vol. 355, no. 1, pp. 1–11.
- Romanov I., Shamaev A. Non-controllability to rest of the two-dimensional distributed system governed by the integrodifferential equation // J. Optim. Theory&Appl., 2016, vol. 170, no. 3, pp. 772–782.
- Chaves-Silva F.W., Rosier L., Zuazua E. Null controllability of a system of viscoelasticity with a moving control // J. de Math. Pures et Appl., 2014, vol. 101, no. 2, pp. 198–222.
- Chaves-Silva F.W., Zhang X., Zuazua E. Controllability of evolution equations with memory // SIAM J. Control&Optim., 2017, vol. 55, no. 4, doi: 10.1137/151004239.
- Biccari U., Micu U. Null-controllability properties of the wave equation with a second order memory term // J. Diff. Eqns., 2019, no. 267, pp. 1376–1422.
- Romanov I. Investigation of controllability for some dynamic system with distributed parameters described by integrodifferential equations // J. Comput.&Syst. Sci. Int., 2022, vol. 61 (2), pp. 191–194.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 






