Neutrino Electromagnetic Properties in Elastic Neutrino–Proton Scattering

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The contribution of neutrino electromagnetic properties to elastic neutrino–proton scattering is considered in detail. The neutrino electromagnetic properties are introduced via the charge, magnetic, electric, and anapole form factors in the basis of neutrino mass eigenstates. The effects of mixing of three neutrino states are taken into account along with effects of the change in the flavor of a neutrino that moves from the source to the detector. The weak neutral and electromagnetic nucleon form factors are also taken into account. The differential cross section calculated numerically for elastic neutrino–proton scattering obtained with allowance for the neutrino charge radius and magnetic moment are compared with the predictions of the Standard Model for reactor and accelerator neutrinos.

About the authors

K. A. Kouzakov

Faculty of Physics, Moscow State University

Email: kouzakov@srd.sinp.msu.ru
119991, Moscow, Russia

F. M. Lazarev

Faculty of Physics, Moscow State University

Email: lazarev.fm15@physics.msu.ru
119991, Moscow, Russia

A. I. Studenikin

Faculty of Physics, Moscow State University

Author for correspondence.
Email: studenik@srd.sinp.msu.ru
119991, Moscow, Russia

References

  1. C. Giunti and A. Studenikin, Rev. Mod. Phys. 87, 531 (2015).
  2. C. Giunti, K. A. Kouzakov, Y.-F. Li, A. V. Lokhov, A. I. Studenikin, and S. Zhou, Ann. Phys. (Berlin) 528, 198 (2016).
  3. А. И. Студеникин, К. А. Кузаков, Вестн. Моск. ун-та. Сер. 3. Физ. Астрон. №5, 3 (2020) [Mosc. Univ. Phys. Bull. 75, 379 (2020)].
  4. J. Bernabéu, L. G. Cabral-Rosetti, J. Papavassiliou, and J. Vidal, Phys. Rev. D 62, 113012 (2000).
  5. J. Bernabéu, J. Papavassiliou, and J. Vidal, Phys. Rev. Lett. 89, 101802 (2002).
  6. J. Bernabéu, J. Papavassiliou, and J. Vidal, Nucl. Phys. B 680, 450 (2004).
  7. K. Fujikawa and R. Shrock, Phys. Rev. Lett. 45, 963 (1980).
  8. L. Alvarez Ruso et al., arXiv:2203.09030 [hep-ph].
  9. Q. Chen, Effective Field Theory Applications: From Dark Matter to Neutrino Nucleon Scattering, Theses and Dissertations–Physics and Astronomy (University of Kentucky, 2021), p. 86.
  10. O. Tomalak, P. Machado, V. Pandey, and R. Plestid, J. High Energy Phys. 2021, 97 (2021).
  11. O. Tomalak, Q. Chen, R. J. Hill, and K. S. McFarland, arXiv:2105.07939.
  12. O. Tomalak, Q. Chen, R. J. Hill, and K. S. McFarland, Nat. Commun. 13, 5286 (2022).
  13. R. S. Sufian, K.-F. Liu, and D. G. Richards, J. High Energy Phys. 2020, 1 (2020).
  14. G. D. Megias, S. Bolognesi, M. B. Barbaro, and E. Tomasi-Gustafsson, Phys. Rev. C 101, 025501 (2020).
  15. X. Zhang, T. J. Hobbs, and G. A. Miller, Phys. Rev. D 102, 074026 (2020).
  16. J. Liang and K.-F. Liu, arXiv:2008.12389 [hep-lat].
  17. D. Z. Freedman, Phys. Rev. D 9, 1389 (1974).
  18. D. Akimov et al., Science 357, 1123 (2017).
  19. J. Yang, J. A. Hernandez, and J. Piekarewicz, Phys. Rev. C 100, 054301 (2019).
  20. C. G. Payne, S. Bacca, G. Hagen, W. G. Jiang, and T. Papenbrock, Phys. Rev. C 100, 061304(R) (2019).
  21. M. Hoferichter, J. Menendez, and A. Schwenk, Phys. Rev. D 102, 074018 (2020).
  22. M. Cadeddu, C. Giunti, K. A. Kouzakov, Y. F. Li, A. I. Studenikin, and Y. Y. Zhang, Phys. Rev. D 98, 113010 (2018).
  23. O. G. Miranda, D. K. Papoulias, G. Sanchez Garcia, O. Sanders, M. Tórtola, and J. W. F. Valle, J. High Energy Phys. 2020, 130 (2020).
  24. M. Cadeddu, F. Dordei, C. Giunti, Y. F. Li, E. Picciau, and Y. Y. Zhang, Phys. Rev. D 102, 015030 (2020).
  25. H. Bonet, A. Bonhomme, C. Buck, K. Fülber, J. Hakenmüller, J. Hempfling, G. Heusser, T. Hugle, M. Lindner, W. Maneschg, T. Rink, H. Strecker, R. Wink, and CONUS Collab., Eur. Phys. J. C 82, 813 (2022).
  26. M. Atzori Corona, M. Cadeddu, N. Cargioli, F. Dordei, C. Giunti, Y. F. Li, C. A. Ternes, and Y. Y. Zhang, J. High Energy Phys. 2022, 164 (2022).
  27. F. An et al., J. Phys. G: Nucl. Part. Phys. 43, 030401 (2016).
  28. M. Nowakowski, E. A. Paschos, and J. M. Rodriguez, Eur. J. Phys. 26, 545 (2005).
  29. R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
  30. E. Aprile et al., Phys. Rev. D 102, 072004 (2020).
  31. А. И. Тернов, Письма в ЖЭТФ 104, 75 (2016) [JETP Lett. 104, 75 (2016)].
  32. A. I. Ternov, Phys. Rev. D 94, 093008 (2016).
  33. K. S. Babu and R. N. Mohapatra, Phys. Rev. D 41, 271 (1990).
  34. G. G. Raffelt, Phys. Rep. 320, 319 (1999).
  35. W. C. Haxton and C. E. Wieman, Ann. Rev. Nucl. Part. Sci. 51, 261 (2001).
  36. C. Giunti and C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics (Oxford University Press, 2007).
  37. W. M. Alberico, S. M. Bilenky, C. Giunti, and K. M. Graczyk, Phys. Rev. C 79, 065204 (2009).
  38. D. K. Papoulias and T. S. Kosmas, Adv. High Energy Phys. 2016, 1490860 (2016).
  39. G. T. Garvey, W. C. Louis, and D. H. White, Phys. Rev. C 48, 761 (1993).
  40. K. A. Kouzakov and A. I. Studenikin, Phys. Rev. D 95, 055013 (2017).
  41. P. Abratenko et al. (MicroBooNE Collab.), Phys. Rev. Lett. 128, 151801 (2022).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Pleiades Publishing, Ltd.