Neutrino Electromagnetic Properties in Elastic Neutrino–Proton Scattering

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The contribution of neutrino electromagnetic properties to elastic neutrino–proton scattering is considered in detail. The neutrino electromagnetic properties are introduced via the charge, magnetic, electric, and anapole form factors in the basis of neutrino mass eigenstates. The effects of mixing of three neutrino states are taken into account along with effects of the change in the flavor of a neutrino that moves from the source to the detector. The weak neutral and electromagnetic nucleon form factors are also taken into account. The differential cross section calculated numerically for elastic neutrino–proton scattering obtained with allowance for the neutrino charge radius and magnetic moment are compared with the predictions of the Standard Model for reactor and accelerator neutrinos.

作者简介

K. Kouzakov

Faculty of Physics, Moscow State University

Email: kouzakov@srd.sinp.msu.ru
119991, Moscow, Russia

F. Lazarev

Faculty of Physics, Moscow State University

Email: lazarev.fm15@physics.msu.ru
119991, Moscow, Russia

A. Studenikin

Faculty of Physics, Moscow State University

编辑信件的主要联系方式.
Email: studenik@srd.sinp.msu.ru
119991, Moscow, Russia

参考

  1. C. Giunti and A. Studenikin, Rev. Mod. Phys. 87, 531 (2015).
  2. C. Giunti, K. A. Kouzakov, Y.-F. Li, A. V. Lokhov, A. I. Studenikin, and S. Zhou, Ann. Phys. (Berlin) 528, 198 (2016).
  3. А. И. Студеникин, К. А. Кузаков, Вестн. Моск. ун-та. Сер. 3. Физ. Астрон. №5, 3 (2020) [Mosc. Univ. Phys. Bull. 75, 379 (2020)].
  4. J. Bernabéu, L. G. Cabral-Rosetti, J. Papavassiliou, and J. Vidal, Phys. Rev. D 62, 113012 (2000).
  5. J. Bernabéu, J. Papavassiliou, and J. Vidal, Phys. Rev. Lett. 89, 101802 (2002).
  6. J. Bernabéu, J. Papavassiliou, and J. Vidal, Nucl. Phys. B 680, 450 (2004).
  7. K. Fujikawa and R. Shrock, Phys. Rev. Lett. 45, 963 (1980).
  8. L. Alvarez Ruso et al., arXiv:2203.09030 [hep-ph].
  9. Q. Chen, Effective Field Theory Applications: From Dark Matter to Neutrino Nucleon Scattering, Theses and Dissertations–Physics and Astronomy (University of Kentucky, 2021), p. 86.
  10. O. Tomalak, P. Machado, V. Pandey, and R. Plestid, J. High Energy Phys. 2021, 97 (2021).
  11. O. Tomalak, Q. Chen, R. J. Hill, and K. S. McFarland, arXiv:2105.07939.
  12. O. Tomalak, Q. Chen, R. J. Hill, and K. S. McFarland, Nat. Commun. 13, 5286 (2022).
  13. R. S. Sufian, K.-F. Liu, and D. G. Richards, J. High Energy Phys. 2020, 1 (2020).
  14. G. D. Megias, S. Bolognesi, M. B. Barbaro, and E. Tomasi-Gustafsson, Phys. Rev. C 101, 025501 (2020).
  15. X. Zhang, T. J. Hobbs, and G. A. Miller, Phys. Rev. D 102, 074026 (2020).
  16. J. Liang and K.-F. Liu, arXiv:2008.12389 [hep-lat].
  17. D. Z. Freedman, Phys. Rev. D 9, 1389 (1974).
  18. D. Akimov et al., Science 357, 1123 (2017).
  19. J. Yang, J. A. Hernandez, and J. Piekarewicz, Phys. Rev. C 100, 054301 (2019).
  20. C. G. Payne, S. Bacca, G. Hagen, W. G. Jiang, and T. Papenbrock, Phys. Rev. C 100, 061304(R) (2019).
  21. M. Hoferichter, J. Menendez, and A. Schwenk, Phys. Rev. D 102, 074018 (2020).
  22. M. Cadeddu, C. Giunti, K. A. Kouzakov, Y. F. Li, A. I. Studenikin, and Y. Y. Zhang, Phys. Rev. D 98, 113010 (2018).
  23. O. G. Miranda, D. K. Papoulias, G. Sanchez Garcia, O. Sanders, M. Tórtola, and J. W. F. Valle, J. High Energy Phys. 2020, 130 (2020).
  24. M. Cadeddu, F. Dordei, C. Giunti, Y. F. Li, E. Picciau, and Y. Y. Zhang, Phys. Rev. D 102, 015030 (2020).
  25. H. Bonet, A. Bonhomme, C. Buck, K. Fülber, J. Hakenmüller, J. Hempfling, G. Heusser, T. Hugle, M. Lindner, W. Maneschg, T. Rink, H. Strecker, R. Wink, and CONUS Collab., Eur. Phys. J. C 82, 813 (2022).
  26. M. Atzori Corona, M. Cadeddu, N. Cargioli, F. Dordei, C. Giunti, Y. F. Li, C. A. Ternes, and Y. Y. Zhang, J. High Energy Phys. 2022, 164 (2022).
  27. F. An et al., J. Phys. G: Nucl. Part. Phys. 43, 030401 (2016).
  28. M. Nowakowski, E. A. Paschos, and J. M. Rodriguez, Eur. J. Phys. 26, 545 (2005).
  29. R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
  30. E. Aprile et al., Phys. Rev. D 102, 072004 (2020).
  31. А. И. Тернов, Письма в ЖЭТФ 104, 75 (2016) [JETP Lett. 104, 75 (2016)].
  32. A. I. Ternov, Phys. Rev. D 94, 093008 (2016).
  33. K. S. Babu and R. N. Mohapatra, Phys. Rev. D 41, 271 (1990).
  34. G. G. Raffelt, Phys. Rep. 320, 319 (1999).
  35. W. C. Haxton and C. E. Wieman, Ann. Rev. Nucl. Part. Sci. 51, 261 (2001).
  36. C. Giunti and C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics (Oxford University Press, 2007).
  37. W. M. Alberico, S. M. Bilenky, C. Giunti, and K. M. Graczyk, Phys. Rev. C 79, 065204 (2009).
  38. D. K. Papoulias and T. S. Kosmas, Adv. High Energy Phys. 2016, 1490860 (2016).
  39. G. T. Garvey, W. C. Louis, and D. H. White, Phys. Rev. C 48, 761 (1993).
  40. K. A. Kouzakov and A. I. Studenikin, Phys. Rev. D 95, 055013 (2017).
  41. P. Abratenko et al. (MicroBooNE Collab.), Phys. Rev. Lett. 128, 151801 (2022).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2023