Deformation Properties and Nuclear Radii ff Hg Isotopes
- Authors: Borzov I.N.1,2, Pankratov S.S.3,4, Tolokonnikov S.V.1,4
-
Affiliations:
- National Research Centre Kurchatov Institute
- Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna
- National Research Center Kurchatov Institute
- Moscow Institute of Physics and Technology (National Research University)
- Issue: Vol 86, No 3 (2023)
- Pages: 436-443
- Section: МАТЕРИАЛЫ LXXII МЕЖДУНАРОДНОЙ КОНФЕРЕНЦИИ “ЯДРО-2022: ФУНДАМЕНТАЛЬНЫЕ ВОПРОСЫ И ПРИЛОЖЕНИЯ”. Ядра. Теория
- Published: 01.04.2023
- URL: https://cardiosomatics.ru/0044-0027/article/view/674711
- DOI: https://doi.org/10.31857/S0044002723030054
- EDN: https://elibrary.ru/RKPYOS
- ID: 674711
Cite item
Abstract
Self-consistent calculations of potential surfaces, quadrupole moments, and charge radii of the mercury isotopes @ Hg are calculated within the approach based on the Fayans energy-density functional. The existence of weakly oblate and strongly prolate isomeric states is shown. The charge radii are predicted to a typical precision of 0.01 fm for all isotopes, with the exception of three particular cases of \({}^{\mathrm{181,183,185}}\)Hg.
About the authors
I. N. Borzov
National Research Centre Kurchatov Institute; Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna
Email: Borzov_IN@nrcki.ru
Moscow, Russia; Moscow oblast, Russia
S. S. Pankratov
National Research Center Kurchatov Institute; Moscow Institute of Physics and Technology (National Research University)
Email: Pankratov_SS@nrcki.ru
Moscow, Russia; Dolgoprudnyi, Russia
S. V. Tolokonnikov
National Research Centre Kurchatov Institute; Moscow Institute of Physics and Technology (National Research University)
Author for correspondence.
Email: Tolokonnikov_SV@nrcki.ru
Moscow, Russia; Dolgoprudny, Moscow oblast, Russia
References
- K. Minamisono et al., Phys. Rev. Lett. 117, 252501 (2016).
- M. Kortelainen, Z. Sun, G. Hagen, W. Nazarewicz, T. Papenbrock, and P.-G. Reinhard, Phys. Rev. C 105, L021303 (2022).
- T. Day Goodacre et al., Phys. Rev. Lett. 126, 032502 (2021).
- I. Angeli and K. P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013).
- S. Sels et al., Phys. Rev. C 99, 044306 (2019).
- A. Barzakh et al., Phys. Rev. Lett. 127, 192501 (2021).
- Y. Hirayama, M. Mukai, Y. X. Watanabe, P. Schury, H. Nakada, J. Y. Moon, T. Hashimoto, S. Iimura, S. C. Jeong, M. Rosenbusch, M. Oyaizu, T. Niwase, M. Tajima, A. Taniguchi, M. Wada, and H. Miyatake, Phys. Rev. C 106, 034326 (2022).
- A. E. Barzakh et al., Phys. Rev. C 101, 034308 (2020).
- S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 676, 49 (2000).
- С. А. Фаянс, Письма в ЖЭТФ 68, 161 (1998) [S. A. Fayans, JETP Lett. 68, 169 (1998)].
- S. V. Tolokonnikov and E. E. Saperstein, Phys. At. Nucl. 73, 1684 (2010).
- E. E. Saperstein, I. N. Borzov, and S. V. Tolokonnikov, JETP Lett. 104, 218 (2016).
- I. N. Borzov and S. V. Tolokonnikov, Phys. At. Nucl. 85, 222 (2022).
- I. N. Borzov and S. V. Tolokonnikov, Phys. At. Nucl. 83, 795 (2020).
- P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 95, 064328 (2017).
- A. J. Miller, K. Minamisono, A. Klose, D. Garand, C. Kujawa, J. D. Lantis, Y. Liu, B. Maaß, P. F. Mantica, W. Nazarewicz, W. Nörtershäuser, S. V. Pineda, P.-G. Reinhard, D. M. Rossi, F. Sommer, C. Sumithrarachchi, et al., Nat. Phys. 15, 432 (2019).
- P.-G. Reinhard, W. Nazarewicz, and R. F. Garcia Ruiz, Phys. Rev. C 101, 021301(R) (2020) and Supplemental Material at http://link.aps.org/supplemental/10.1103/Phys RevC.101.021301
- R. F. Garcia Ruiz, M. L. Bissell, K. Blaum, A. Ekström, N. Frömmgen, G. Hagen, M. Hammen, K. Hebeler, J. D. Holt, G. R. Jansen, M. Kowalska, K. Kreim, W. Nazarewicz, R. Neugart, G. Neyens, W. Nörtershäuser, et al., Nat. Phys. 12, 594 (2016).
- Á. Koszorús, X. F. Yang, W. G. Jiang S. J. Novario, S. W. Bai, J. Billowes, C. L. Binnersley, M. L. Bissell, T. E. Cocolios, B. S. Cooper, R. P. de Groote, A. Ekström, K. T. Flanagan, C. Forssén, S. Franchoo, R. F. Garcia Ruiz, et al., Nat. Phys. 17, 439 (2021).
- U. C. Perera, A. V. Afanasjev, and P. Ring, Phys. Rev. C 104, 064313 (2021).
- B. Friedman and V. R. Pandharipande, Nucl. Phys. A 361, 502 (1981).
- R. B. Wiringa, V. Fiks, and A. Fabrocini, Phys. Rev. 38, 1010 (1988).
- S. V. Tolokonnikov, I. N. Borzov, M. Kortelainen, Y. S. Lutostansky, and E. E. Saperstein, J. Phys. G 42, 075102 (2015).
- S. V. Tolokonnikov, I. N. Borzov, Y. S. Lutostansky, and E. E. Saperstein, Phys. At. Nucl. 79, 21 (2016).
- S. V. Tolokonnikov, I. N. Borzov, Y. S. Lutostansky, I. V. Panov, and E. E. Saperstein, Phys. At. Nucl. 80, 631 (2017).
- M. V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, and S. Wild, Comput. Phys. Commun. 184, 1592 (2013).
- Meng Wang, W. J. Huang, F. G. Kondev, G. Audi, and S. Naimi, Chin. Phys. C 45, 030003 (2021).
- https://physics.nist.gov/cgi-bin/cuu/Value/rp
- N. J. Stone, At. Data Nucl. Data Tables 90, 75 (2005).
- N. J. Stone, https://www-nds.iaea.org/publications/indc/indc-nds-0658.pdf
Supplementary files
