Deformation Properties and Nuclear Radii ff Hg Isotopes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Self-consistent calculations of potential surfaces, quadrupole moments, and charge radii of the mercury isotopes @ Hg are calculated within the approach based on the Fayans energy-density functional. The existence of weakly oblate and strongly prolate isomeric states is shown. The charge radii are predicted to a typical precision of 0.01 fm for all isotopes, with the exception of three particular cases of  \({}^{\mathrm{181,183,185}}\)Hg.

Sobre autores

I. Borzov

National Research Centre Kurchatov Institute; Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna

Email: Borzov_IN@nrcki.ru
Moscow, Russia; Moscow oblast, Russia

S. Pankratov

National Research Center Kurchatov Institute; Moscow Institute of Physics and Technology (National Research University)

Email: Pankratov_SS@nrcki.ru
Moscow, Russia; Dolgoprudnyi, Russia

S. Tolokonnikov

National Research Centre Kurchatov Institute; Moscow Institute of Physics and Technology (National Research University)

Autor responsável pela correspondência
Email: Tolokonnikov_SV@nrcki.ru
Moscow, Russia; Dolgoprudny, Moscow oblast, Russia

Bibliografia

  1. K. Minamisono et al., Phys. Rev. Lett. 117, 252501 (2016).
  2. M. Kortelainen, Z. Sun, G. Hagen, W. Nazarewicz, T. Papenbrock, and P.-G. Reinhard, Phys. Rev. C 105, L021303 (2022).
  3. T. Day Goodacre et al., Phys. Rev. Lett. 126, 032502 (2021).
  4. I. Angeli and K. P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013).
  5. S. Sels et al., Phys. Rev. C 99, 044306 (2019).
  6. A. Barzakh et al., Phys. Rev. Lett. 127, 192501 (2021).
  7. Y. Hirayama, M. Mukai, Y. X. Watanabe, P. Schury, H. Nakada, J. Y. Moon, T. Hashimoto, S. Iimura, S. C. Jeong, M. Rosenbusch, M. Oyaizu, T. Niwase, M. Tajima, A. Taniguchi, M. Wada, and H. Miyatake, Phys. Rev. C 106, 034326 (2022).
  8. A. E. Barzakh et al., Phys. Rev. C 101, 034308 (2020).
  9. S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 676, 49 (2000).
  10. С. А. Фаянс, Письма в ЖЭТФ 68, 161 (1998) [S. A. Fayans, JETP Lett. 68, 169 (1998)].
  11. S. V. Tolokonnikov and E. E. Saperstein, Phys. At. Nucl. 73, 1684 (2010).
  12. E. E. Saperstein, I. N. Borzov, and S. V. Tolokonnikov, JETP Lett. 104, 218 (2016).
  13. I. N. Borzov and S. V. Tolokonnikov, Phys. At. Nucl. 85, 222 (2022).
  14. I. N. Borzov and S. V. Tolokonnikov, Phys. At. Nucl. 83, 795 (2020).
  15. P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 95, 064328 (2017).
  16. A. J. Miller, K. Minamisono, A. Klose, D. Garand, C. Kujawa, J. D. Lantis, Y. Liu, B. Maaß, P. F. Mantica, W. Nazarewicz, W. Nörtershäuser, S. V. Pineda, P.-G. Reinhard, D. M. Rossi, F. Sommer, C. Sumithrarachchi, et al., Nat. Phys. 15, 432 (2019).
  17. P.-G. Reinhard, W. Nazarewicz, and R. F. Garcia Ruiz, Phys. Rev. C 101, 021301(R) (2020) and Supplemental Material at http://link.aps.org/supplemental/10.1103/Phys RevC.101.021301
  18. R. F. Garcia Ruiz, M. L. Bissell, K. Blaum, A. Ekström, N. Frömmgen, G. Hagen, M. Hammen, K. Hebeler, J. D. Holt, G. R. Jansen, M. Kowalska, K. Kreim, W. Nazarewicz, R. Neugart, G. Neyens, W. Nörtershäuser, et al., Nat. Phys. 12, 594 (2016).
  19. Á. Koszorús, X. F. Yang, W. G. Jiang S. J. Novario, S. W. Bai, J. Billowes, C. L. Binnersley, M. L. Bissell, T. E. Cocolios, B. S. Cooper, R. P. de Groote, A. Ekström, K. T. Flanagan, C. Forssén, S. Franchoo, R. F. Garcia Ruiz, et al., Nat. Phys. 17, 439 (2021).
  20. U. C. Perera, A. V. Afanasjev, and P. Ring, Phys. Rev. C 104, 064313 (2021).
  21. B. Friedman and V. R. Pandharipande, Nucl. Phys. A 361, 502 (1981).
  22. R. B. Wiringa, V. Fiks, and A. Fabrocini, Phys. Rev. 38, 1010 (1988).
  23. S. V. Tolokonnikov, I. N. Borzov, M. Kortelainen, Y. S. Lutostansky, and E. E. Saperstein, J. Phys. G 42, 075102 (2015).
  24. S. V. Tolokonnikov, I. N. Borzov, Y. S. Lutostansky, and E. E. Saperstein, Phys. At. Nucl. 79, 21 (2016).
  25. S. V. Tolokonnikov, I. N. Borzov, Y. S. Lutostansky, I. V. Panov, and E. E. Saperstein, Phys. At. Nucl. 80, 631 (2017).
  26. M. V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, and S. Wild, Comput. Phys. Commun. 184, 1592 (2013).
  27. Meng Wang, W. J. Huang, F. G. Kondev, G. Audi, and S. Naimi, Chin. Phys. C 45, 030003 (2021).
  28. https://physics.nist.gov/cgi-bin/cuu/Value/rp
  29. N. J. Stone, At. Data Nucl. Data Tables 90, 75 (2005).
  30. N. J. Stone, https://www-nds.iaea.org/publications/indc/indc-nds-0658.pdf

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2023