Features of Forbush decreases according to satellite and ground based detectors

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Forbush decreases are sudden drops of cosmic ray intensity recorded by ground based and satellite detectors. This effect is strongly connected with coronal mass ejections from the Sun. Those are the massive eruptions of plasma material from the Sun atmosphere into interplanetary space. Coronal mass ejections affect cosmic ray particles while moving through interplanetary space causing Forbush decrease. In this work, we have studied the behavior of temporal profiles of cosmic ray intensity during Forbush decreases using data on cosmic proton fluxes recorded by the AMS-02 spectrometer during 2011 to 2019.

Texto integral

Acesso é fechado

Sobre autores

I. Lagoida

National Research Nuclear University ‟MEPhI” (Moscow Engineering Physics Institute)

Autor responsável pela correspondência
Email: IALagoida@mephi.ru
Rússia, Moscow

S. Voronov

National Research Nuclear University ‟MEPhI” (Moscow Engineering Physics Institute)

Email: IALagoida@mephi.ru
Rússia, Moscow

V. Mikhailov

National Research Nuclear University ‟MEPhI” (Moscow Engineering Physics Institute)

Email: IALagoida@mephi.ru
Rússia, Moscow

Bibliografia

  1. S. E. Forbush, Phys. Rev. 51, 1108 (1937).
  2. N. Gopalswamy, Space Sci. Rev. 124, 145 (2006).
  3. A. V. Belov, E. A. Eroshenko, A. B. Struminsky, and V. G. Yanke, Adv. Space Res. 27, 625 (2001).
  4. I. G. Richardson and H. V. Cane, Sol. Phys. 270, 609 (2011).
  5. N. Iucci, M. Parisi, M. Storini, and G. Villoresi, Nuovo Cimento 2, 1 (1979).
  6. H. S. Hudson, J. L. Bougeret, and J. Burkepile, Space Sci. Rev. 123, 13 (2006).
  7. P. Picozza, A. M. Galper, G. Castellini, O. Andriani, F. Altamura, M. Ambriola, G. C. Barbarino, A. Basili, G. A. Bazilevskaja. R. Bencardino, M. Boezio, E. A. Bogomolov, L. Bonechi, M. Bongi, L. Bongiorno, V. Bonvicini, et al., Astropart. Phys. 27, 296 (2007).
  8. T. H. Zurbuchen and I. G. Richardson, Space Sci. Rev. 123, 31 (2006).
  9. I. G. Richardson and H. V. Cane, J. Geophys. Res. Space Phys. 100, 23397 (1995).
  10. H. V. Cane, Space Sci. Rev. 93, 55 (2000).
  11. J. A. Lockwood, Space. Sci. Rev. 12, 658 (1971).
  12. J. A. Lockwood, W. R. Webber, and J. R. Jokipii, J. Geophys. Res. Space Phys. 91, 2851 (1986).
  13. W. R. Webber, in Progress in Elementary Particle and Cosmic Ray Physics, Ed. by J. G. Wilson and S. A. Wouthuysen (North-Holland, Amsterdam, 1962), p. 75.
  14. G. Wibberenz, J. A. Le Roux, M. S. Potgieter, and J. W. Bieber, Space Sci. Rev. 83, 309 (1998).
  15. I. G. Usoskin, I. Braun, O. G. Gladysheva, J. R. Horandel, T. Jamsen, G. A. Kovaltsov, and S. A. Starodubsev, J. Geophys. Res. 113, A07102 (2008).
  16. L. Zhao and L. Zhang. Astrophys. J. 827, 13 (2016).
  17. R. Munini, M. Boezio, A. Bruno, E. C. Christian, G. A. de Nolfi, V. Di Felice, M. Martucci, M. Merge, I. G. Richardson, J. M. Ryan, S. Stochaj, O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Bongi, et al., Astrophys. J. 853, 11 (2018).
  18. F. Alemanno, Qi An, P. Azzarello, F. C. T. Barbato, P. Bernardini, B. XiaoJun, M. Cai, E. Casilli, E. Catanzani, J. Chang, D. Chen, J. Chen, Z. Chen, M. Cui, T. Cui, Y. Cui, et al., Astrophys. J. Lett. 920, L43 (2021).
  19. I. A. Lagoida, S. A. Voronov, V. V. Mikhailov, M. Boezio, R. Munini, C. Gustavino, G. A. Bazilevskaya, R. Belloti, E. A. Bogomolov, V. Bonvicini, F. Cafanga, D. Campana, M. Casolino, A. M. Galper, S. Koldobskiy, A. N. Kvashnin, et al., Sol. Phys. 298, 9 (2023).
  20. M. Aguilar, L. Ali Cavasonza, G. Ambrosi, L. Arruda, N. Attig, F. Barao, L. Barrin, A. Bartoloni, J. Bates, R. Battiston, M. Behlmann, B. Beischer, J. Berdugo, B. Bertucci, V. Bindi, W. de Boer, et al., Phys. Rev. Lett. 127, 271102 (2021).
  21. V. Domingo, B. Fleck, and A. I. Poland, Space Sci. Rev. 72, 81 (1995).
  22. K. W. Ogilvie and M. D. Desch, Adv. Space Res. 20, 559 (1997).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. a — FP in the CR proton flux (1.1–2.9 GV) according to PAMELA spectrometer data in June 2012 and the corresponding ICME stages (I — shock wave, II — turbulence region, III — magnetic cloud) in the characteristics of interplanetary space; b — modulus of the interplanetary magnetic field strength; c — solar wind speed; d — real (solid curve) and expected (dashed curve) temperatures of the proton plasma.

Baixar (148KB)
3. Fig. 2. Inorm — normalized CR intensities during the FP recorded by the AMS-02 spectrometer in June 2015 for three severity intervals; A — FP amplitude (%); τ — recovery time (days).

Baixar (198KB)
4. Fig. 3. Inorm — normalized CR intensities during the FP recorded by the AMS-02 spectrometer in September 2012 for three severity intervals; A — FP amplitude (%); τ — recovery time (days).

Baixar (172KB)
5. Fig. 4. Inorm — normalized count rates of three neutron monitors (Moscow, Oulu, Mirny) compared with normalized proton intensity during the FP in June 2015; A — FP amplitude (%); τ — recovery time (days); RС — geomagnetic cutoff rigidity. The FP amplitudes and recovery times were calculated based on the neutron monitor data.

Baixar (213KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024