Features of Forbush decreases according to satellite and ground based detectors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Forbush decreases are sudden drops of cosmic ray intensity recorded by ground based and satellite detectors. This effect is strongly connected with coronal mass ejections from the Sun. Those are the massive eruptions of plasma material from the Sun atmosphere into interplanetary space. Coronal mass ejections affect cosmic ray particles while moving through interplanetary space causing Forbush decrease. In this work, we have studied the behavior of temporal profiles of cosmic ray intensity during Forbush decreases using data on cosmic proton fluxes recorded by the AMS-02 spectrometer during 2011 to 2019.

Full Text

Restricted Access

About the authors

I. A. Lagoida

National Research Nuclear University ‟MEPhI” (Moscow Engineering Physics Institute)

Author for correspondence.
Email: IALagoida@mephi.ru
Russian Federation, Moscow

S. A. Voronov

National Research Nuclear University ‟MEPhI” (Moscow Engineering Physics Institute)

Email: IALagoida@mephi.ru
Russian Federation, Moscow

V. V. Mikhailov

National Research Nuclear University ‟MEPhI” (Moscow Engineering Physics Institute)

Email: IALagoida@mephi.ru
Russian Federation, Moscow

References

  1. S. E. Forbush, Phys. Rev. 51, 1108 (1937).
  2. N. Gopalswamy, Space Sci. Rev. 124, 145 (2006).
  3. A. V. Belov, E. A. Eroshenko, A. B. Struminsky, and V. G. Yanke, Adv. Space Res. 27, 625 (2001).
  4. I. G. Richardson and H. V. Cane, Sol. Phys. 270, 609 (2011).
  5. N. Iucci, M. Parisi, M. Storini, and G. Villoresi, Nuovo Cimento 2, 1 (1979).
  6. H. S. Hudson, J. L. Bougeret, and J. Burkepile, Space Sci. Rev. 123, 13 (2006).
  7. P. Picozza, A. M. Galper, G. Castellini, O. Andriani, F. Altamura, M. Ambriola, G. C. Barbarino, A. Basili, G. A. Bazilevskaja. R. Bencardino, M. Boezio, E. A. Bogomolov, L. Bonechi, M. Bongi, L. Bongiorno, V. Bonvicini, et al., Astropart. Phys. 27, 296 (2007).
  8. T. H. Zurbuchen and I. G. Richardson, Space Sci. Rev. 123, 31 (2006).
  9. I. G. Richardson and H. V. Cane, J. Geophys. Res. Space Phys. 100, 23397 (1995).
  10. H. V. Cane, Space Sci. Rev. 93, 55 (2000).
  11. J. A. Lockwood, Space. Sci. Rev. 12, 658 (1971).
  12. J. A. Lockwood, W. R. Webber, and J. R. Jokipii, J. Geophys. Res. Space Phys. 91, 2851 (1986).
  13. W. R. Webber, in Progress in Elementary Particle and Cosmic Ray Physics, Ed. by J. G. Wilson and S. A. Wouthuysen (North-Holland, Amsterdam, 1962), p. 75.
  14. G. Wibberenz, J. A. Le Roux, M. S. Potgieter, and J. W. Bieber, Space Sci. Rev. 83, 309 (1998).
  15. I. G. Usoskin, I. Braun, O. G. Gladysheva, J. R. Horandel, T. Jamsen, G. A. Kovaltsov, and S. A. Starodubsev, J. Geophys. Res. 113, A07102 (2008).
  16. L. Zhao and L. Zhang. Astrophys. J. 827, 13 (2016).
  17. R. Munini, M. Boezio, A. Bruno, E. C. Christian, G. A. de Nolfi, V. Di Felice, M. Martucci, M. Merge, I. G. Richardson, J. M. Ryan, S. Stochaj, O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Bongi, et al., Astrophys. J. 853, 11 (2018).
  18. F. Alemanno, Qi An, P. Azzarello, F. C. T. Barbato, P. Bernardini, B. XiaoJun, M. Cai, E. Casilli, E. Catanzani, J. Chang, D. Chen, J. Chen, Z. Chen, M. Cui, T. Cui, Y. Cui, et al., Astrophys. J. Lett. 920, L43 (2021).
  19. I. A. Lagoida, S. A. Voronov, V. V. Mikhailov, M. Boezio, R. Munini, C. Gustavino, G. A. Bazilevskaya, R. Belloti, E. A. Bogomolov, V. Bonvicini, F. Cafanga, D. Campana, M. Casolino, A. M. Galper, S. Koldobskiy, A. N. Kvashnin, et al., Sol. Phys. 298, 9 (2023).
  20. M. Aguilar, L. Ali Cavasonza, G. Ambrosi, L. Arruda, N. Attig, F. Barao, L. Barrin, A. Bartoloni, J. Bates, R. Battiston, M. Behlmann, B. Beischer, J. Berdugo, B. Bertucci, V. Bindi, W. de Boer, et al., Phys. Rev. Lett. 127, 271102 (2021).
  21. V. Domingo, B. Fleck, and A. I. Poland, Space Sci. Rev. 72, 81 (1995).
  22. K. W. Ogilvie and M. D. Desch, Adv. Space Res. 20, 559 (1997).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. a — FP in the CR proton flux (1.1–2.9 GV) according to PAMELA spectrometer data in June 2012 and the corresponding ICME stages (I — shock wave, II — turbulence region, III — magnetic cloud) in the characteristics of interplanetary space; b — modulus of the interplanetary magnetic field strength; c — solar wind speed; d — real (solid curve) and expected (dashed curve) temperatures of the proton plasma.

Download (148KB)
3. Fig. 2. Inorm — normalized CR intensities during the FP recorded by the AMS-02 spectrometer in June 2015 for three severity intervals; A — FP amplitude (%); τ — recovery time (days).

Download (198KB)
4. Fig. 3. Inorm — normalized CR intensities during the FP recorded by the AMS-02 spectrometer in September 2012 for three severity intervals; A — FP amplitude (%); τ — recovery time (days).

Download (172KB)
5. Fig. 4. Inorm — normalized count rates of three neutron monitors (Moscow, Oulu, Mirny) compared with normalized proton intensity during the FP in June 2015; A — FP amplitude (%); τ — recovery time (days); RС — geomagnetic cutoff rigidity. The FP amplitudes and recovery times were calculated based on the neutron monitor data.

Download (213KB)

Copyright (c) 2024 Russian Academy of Sciences