The magicity, the radii of neutron orbits 1f7/2, 2p3/2 and halo-like structure of 52,54Ca nuclei

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The evolution of neutron single-particle spectra of isotones with N = 32 and 34 new magic neutron numbers in the region 16 ≤ Z ≤ 32 was calculated in the dispersive optical model. It was shown that the minimum of the difference between the Fermi energy and the half-sum of the energy levels of the last predominantly occupied state and the first predominantly unoccupied state is achieved in the magic isotones with N = 32 and 34. The calculated root-mean-square radius of the neutron halo-like state 2p3/2 in double magic 52Ca nucleus exceeded the radius of the underlying 1f7/2 state by 0.8 fm. It is consistent with the recent experimental data and theoretical predictions that explain ‟unexpectedly” large root-mean-square charge radius of this nucleus.

Texto integral

Acesso é fechado

Sobre autores

O. Bespalova

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Autor responsável pela correspondência
Email: besp@sinp.msu.ru
Rússia, Moscow

A. Klimochkina

Lomonosov Moscow State University

Email: besp@sinp.msu.ru

Faculty of Physics

Rússia, Moscow

Bibliografia

  1. База данных ENSDF, http://www.nndc.bnl.gov/ensdf
  2. A. Gade, R. V. F. Janssens, D. Bazin, R. Broda, B. A. Brown, C. M. Campbell, M. P. Carpenter, J. M. Cook, A. N. Deacon, D.-C. Dinca, B. Fornal, S. J. Freeman, T. Glasmacher, P. G. Hansen, B. P. Kay, P. F. Mantica, et al., Phys. Rev. C 74, 021302(R) (2006).
  3. D. Steppenbeck, S. Takeuchi, N. Aoi, P. Doornenbal, M. Matsushita, H. Wang, H. Baba, N. Fukuda, S. Go, M. Honma, J. Lee, K. Matsui, S. Michimasa, T. Motobayashi, D. Nishimura, T. Otsuka, et al., Nature 502, 207 (2013).
  4. M. Honma, T. Otsuka, B.A. Brown, and T. Mizusaki, Eur. Phys. J. A 25, 499 (2005).
  5. R. F. Garcia Ruiz, M. L. Bissell, K. Blaum, A. Ekström, N. Frömmgen, G. Hagen, M. Hammen, K. Hebeler, J. D. Holt, G. R. Jansen, M. Kowalska, K. Kreim, W. Nazarewicz, R. Neugart, G. Neyens, W. Nörtershäuser, et al., Nature Phys. 12, 594 (2016).
  6. J. Bonnard, S. M. Lenzi, and A. P. Zuker, Phys. Rev. Lett. 116, 212501 (2016).
  7. M. Enciu, H. N. Liu, A. Obertelli, P. Doornenbal, F. Nowacki, K. Ogata, A. Poves, K. Yoshida, N. L. Achouri, H. Baba, F. Browne, D. Calvet, F. Château, S. Chen, N. Chiga, A. Cors, et al., Phys. Rev. Lett. 129, 262501 (2022).
  8. C. Mahaux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991).
  9. M. Wang, W. J. Huang, F. G. Kondev, G. Audi, and S. Naimi, Chin. Phys. C 45, 030003 (2021).
  10. M. Jaminon and C. Mahaux, Nucl. Phys. A 440, 228 (1985).
  11. A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).
  12. О. В. Беспалова, И. Н. Бобошин, В. В. Варламов, Т. А. Ермакова, Б. С. Ишханов, Е. А. Романовский, Т. И. Спасская, Т. П. Тимохина, ЯФ 71, 37 (2008) [O. V. Bespalova, I. N. Boboshin, V. V. Varlamov, T. A. Ermakova, B. S. Ishkhanov, E. A. Romanovsky, T. I. Spasskaya, and T. P. Timokhina, Phys. At. Nucl. 71, 36 (2008)].
  13. О. В. Беспалова, И. Н. Бобошин, В. В. Варламов, Т. А. Ермакова, Б. С. Ишханов, А. А. Климочкина, С. Ю. Комаров, Ч. Коура, Е. А. Романовский, Т. И. Спасская, Изв. РАН. Сер. физ. 74, 575 (2010) [O. V. Bespalova, I. N. Boboshin, V. V. Varlamov, T. A. Ermakova, B. S. Ishkhanov, A. A. Klimochkina, S. Yu. Komarov, H. Koura, E. A. Romanovsky, and T. I. Spasskaya, Bull. Russ. Acad. Sci.: Phys. 74, 542 (2010)].
  14. О. В. Беспалова, Е. А. Романовский, Т. И. Спасская, ЯФ 78, 123 (2015) [O. V. Bespalova, E. A. Romanovsky, and T. I. Spasskaya, Phys. At. Nucl. 78, 118 (2015)].
  15. О. В. Беспалова, А. А. Климочкина, ЯФ 80, 516 (2017) [O. V. Bespalova and A. A. Klimochkina, Phys. At. Nucl. 80, 919 (2017)].
  16. C. D. Pruitt, J. E. Escher, and R. Rahman, Phys. Rev. C 107, 014602 (2023).
  17. О. В. Беспалова, А. А. Климочкина, ЭЧАЯ 53, 428 (2022) [O. V. Bespalova and A. A. Klimochkina, Phys. Part. Nucl. 53, 476 (2022)].
  18. V. Rotival and T. Duguet, Phys. Rev. C 79, 054308 (2009).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Experimental energies (a) and root-mean-square charge radii rch (b) of even Ca isotopes.

Baixar (84KB)
3. Fig. 2. Neutron single-particle energies of isotones with N = 32. Light symbols connected by solid lines are calculations with DOP, dashed line is energy EF, dashed lines are energies –Sn(A), –Sn(A + 1). Dark symbols are the result of joint evaluation of data from neutron stripping and pickup reactions on the same nucleus [12, 13].

Baixar (84KB)
4. Fig. 3. Experimental energies of isotones with N = 32 (squares) and N = 34 (circles).

Baixar (71KB)
5. Fig. 4. The same as in Fig. 2 for isotones with N = 34.

Baixar (102KB)
6. Fig. 5. Neutron density ρn(r) (a) and the second derivative of its logarithm (b) for the isotopes 48Ca (dashed curve), 52Ca (solid) and 54Ca (dotted).

Baixar (112KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024