The magicity, the radii of neutron orbits 1f7/2, 2p3/2 and halo-like structure of 52,54Ca nuclei

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The evolution of neutron single-particle spectra of isotones with N = 32 and 34 new magic neutron numbers in the region 16 ≤ Z ≤ 32 was calculated in the dispersive optical model. It was shown that the minimum of the difference between the Fermi energy and the half-sum of the energy levels of the last predominantly occupied state and the first predominantly unoccupied state is achieved in the magic isotones with N = 32 and 34. The calculated root-mean-square radius of the neutron halo-like state 2p3/2 in double magic 52Ca nucleus exceeded the radius of the underlying 1f7/2 state by 0.8 fm. It is consistent with the recent experimental data and theoretical predictions that explain ‟unexpectedly” large root-mean-square charge radius of this nucleus.

Full Text

Restricted Access

About the authors

O. V. Bespalova

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Author for correspondence.
Email: besp@sinp.msu.ru
Russian Federation, Moscow

A. A. Klimochkina

Lomonosov Moscow State University

Email: besp@sinp.msu.ru

Faculty of Physics

Russian Federation, Moscow

References

  1. База данных ENSDF, http://www.nndc.bnl.gov/ensdf
  2. A. Gade, R. V. F. Janssens, D. Bazin, R. Broda, B. A. Brown, C. M. Campbell, M. P. Carpenter, J. M. Cook, A. N. Deacon, D.-C. Dinca, B. Fornal, S. J. Freeman, T. Glasmacher, P. G. Hansen, B. P. Kay, P. F. Mantica, et al., Phys. Rev. C 74, 021302(R) (2006).
  3. D. Steppenbeck, S. Takeuchi, N. Aoi, P. Doornenbal, M. Matsushita, H. Wang, H. Baba, N. Fukuda, S. Go, M. Honma, J. Lee, K. Matsui, S. Michimasa, T. Motobayashi, D. Nishimura, T. Otsuka, et al., Nature 502, 207 (2013).
  4. M. Honma, T. Otsuka, B.A. Brown, and T. Mizusaki, Eur. Phys. J. A 25, 499 (2005).
  5. R. F. Garcia Ruiz, M. L. Bissell, K. Blaum, A. Ekström, N. Frömmgen, G. Hagen, M. Hammen, K. Hebeler, J. D. Holt, G. R. Jansen, M. Kowalska, K. Kreim, W. Nazarewicz, R. Neugart, G. Neyens, W. Nörtershäuser, et al., Nature Phys. 12, 594 (2016).
  6. J. Bonnard, S. M. Lenzi, and A. P. Zuker, Phys. Rev. Lett. 116, 212501 (2016).
  7. M. Enciu, H. N. Liu, A. Obertelli, P. Doornenbal, F. Nowacki, K. Ogata, A. Poves, K. Yoshida, N. L. Achouri, H. Baba, F. Browne, D. Calvet, F. Château, S. Chen, N. Chiga, A. Cors, et al., Phys. Rev. Lett. 129, 262501 (2022).
  8. C. Mahaux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991).
  9. M. Wang, W. J. Huang, F. G. Kondev, G. Audi, and S. Naimi, Chin. Phys. C 45, 030003 (2021).
  10. M. Jaminon and C. Mahaux, Nucl. Phys. A 440, 228 (1985).
  11. A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).
  12. О. В. Беспалова, И. Н. Бобошин, В. В. Варламов, Т. А. Ермакова, Б. С. Ишханов, Е. А. Романовский, Т. И. Спасская, Т. П. Тимохина, ЯФ 71, 37 (2008) [O. V. Bespalova, I. N. Boboshin, V. V. Varlamov, T. A. Ermakova, B. S. Ishkhanov, E. A. Romanovsky, T. I. Spasskaya, and T. P. Timokhina, Phys. At. Nucl. 71, 36 (2008)].
  13. О. В. Беспалова, И. Н. Бобошин, В. В. Варламов, Т. А. Ермакова, Б. С. Ишханов, А. А. Климочкина, С. Ю. Комаров, Ч. Коура, Е. А. Романовский, Т. И. Спасская, Изв. РАН. Сер. физ. 74, 575 (2010) [O. V. Bespalova, I. N. Boboshin, V. V. Varlamov, T. A. Ermakova, B. S. Ishkhanov, A. A. Klimochkina, S. Yu. Komarov, H. Koura, E. A. Romanovsky, and T. I. Spasskaya, Bull. Russ. Acad. Sci.: Phys. 74, 542 (2010)].
  14. О. В. Беспалова, Е. А. Романовский, Т. И. Спасская, ЯФ 78, 123 (2015) [O. V. Bespalova, E. A. Romanovsky, and T. I. Spasskaya, Phys. At. Nucl. 78, 118 (2015)].
  15. О. В. Беспалова, А. А. Климочкина, ЯФ 80, 516 (2017) [O. V. Bespalova and A. A. Klimochkina, Phys. At. Nucl. 80, 919 (2017)].
  16. C. D. Pruitt, J. E. Escher, and R. Rahman, Phys. Rev. C 107, 014602 (2023).
  17. О. В. Беспалова, А. А. Климочкина, ЭЧАЯ 53, 428 (2022) [O. V. Bespalova and A. A. Klimochkina, Phys. Part. Nucl. 53, 476 (2022)].
  18. V. Rotival and T. Duguet, Phys. Rev. C 79, 054308 (2009).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental energies (a) and root-mean-square charge radii rch (b) of even Ca isotopes.

Download (84KB)
3. Fig. 2. Neutron single-particle energies of isotones with N = 32. Light symbols connected by solid lines are calculations with DOP, dashed line is energy EF, dashed lines are energies –Sn(A), –Sn(A + 1). Dark symbols are the result of joint evaluation of data from neutron stripping and pickup reactions on the same nucleus [12, 13].

Download (84KB)
4. Fig. 3. Experimental energies of isotones with N = 32 (squares) and N = 34 (circles).

Download (71KB)
5. Fig. 4. The same as in Fig. 2 for isotones with N = 34.

Download (102KB)
6. Fig. 5. Neutron density ρn(r) (a) and the second derivative of its logarithm (b) for the isotopes 48Ca (dashed curve), 52Ca (solid) and 54Ca (dotted).

Download (112KB)

Copyright (c) 2024 Russian Academy of Sciences