Возможности супрамолекулярной системы на основе гексамолибденовых кластерных комплексов при определении амитриптилина амперометрическими иммуносенорами в моче человека

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Разработан способ определения амитриптилина как представителя трициклических антидепрессантов иммуносенсорами с использованием супрамолекулярных систем на основе гексамолибденовых кластерных комплексов в моче человека. Данные комплексы обладают электрохимической активностью и дают стабильный аналитический сигнал, что использовано при разработке амперометрических иммуносенсоров. Для доказательства образования супрамолекулярной системы самоорганизованных гексамолибденовых наночастиц и молекул хитозана применили методы люминесценции и динамического рассеяния света. Разработан композитный материал на основе гексамолибденовых кластерных комплексов в сочетании с восстановленным оксидом графена. Рабочий диапазон концентраций амитриптилина при определении амперометрическим иммуносенсором составил 1 × 10–9–1 × 10–4 М, нижняя граница определяемых содержаний лежит на уровне 5 × 10–10 М, содержание амитриптилина в образцах мочи – на уровне (n – 7) × 10–8 М. Сопоставление результатов анализа амперометрическим иммуносенсором и поляризационным флуоресцентным иммуноанализом показало отсутствие значимых систематических погрешностей. Возможность определения амитриптилина в биологических жидкостях позволяет подобрать оптимальную терапевтическую дозу лекарственного препарата, т.е. разработать подходы к созданию персонифицированной медицины.

Об авторах

Д. В. Брусницын

Казанский (Приволжский) федеральный университет

Автор, ответственный за переписку.
Email: brussman@mail.ru

Химический институт им. А.М. Бутлерова

Россия, ул. Кремлевская, 18, Казань, 420008

Э. П. Медянцева

Казанский (Приволжский) федеральный университет

Email: brussman@mail.ru

Химический институт им. А.М. Бутлерова

Россия, ул. Кремлевская, 18, Казань, 420008

А. Н. Рамазанова

Казанский (Приволжский) федеральный университет

Email: brussman@mail.ru

Химический институт им. А.М. Бутлерова

Россия, ул. Кремлевская, 18, Казань, 420008

А. В. Прыткова

Казанский (Приволжский) федеральный университет

Email: brussman@mail.ru

Химический институт им. А.М. Бутлерова

Россия, ул. Кремлевская, 18, Казань, 420008

Э. Р. Каримова

Межрегиональный клинико-диагностический центр

Email: brussman@mail.ru
Россия, ул. Карбышева, 12а, Казань, 420101

Ю. Г. Елистратова

Федеральный исследовательский центр “Казанский научный центр” Российской академии наук

Email: brussman@mail.ru

Институт органической и физической химии им. А.Е. Арбузова

Россия, ул. Ак. Арбузова, 8, Казань, 420088

А. Р. Мустафина

Федеральный исследовательский центр “Казанский научный центр” Российской академии наук

Email: brussman@mail.ru

Институт органической и физической химии им. А.Е. Арбузова

Россия, ул. Ак. Арбузова, 8, Казань, 420088

М. Н. Соколов

Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук

Email: brussman@mail.ru
Россия, просп. Академика Лаврентьева, 3, Новосибирск, 630090

С. А. Еремин

Московский государственный университет им. М.В. Ломоносова

Email: brussman@mail.ru

химический факультет

Россия, Ленинские горы, 1, Москва, 119991

Л. И. Мухаметова

Московский государственный университет им. М.В. Ломоносова

Email: brussman@mail.ru

химический факультет

Россия, Ленинские горы, 1, Москва, 119991

Список литературы

  1. Tarley C.R.T., Gorla F.A., Oliveira de F.M., Nascentes C.C., Ferreira P. do M., Costa da F.M., Segatelli M.G. Investigation of the performance of cross-linked poly(acrylic acid) and poly(methacrylic acid) as efficient adsorbents in SPE columns for simultaneous preconcentration of tricyclic antidepressants in water samples // Anal. Methods. 2022. V. 14. № 48. P. 5100. https://doi.org/10.1039/D2AY01520J
  2. Farajzadeh M.A., Barazandeh S., Pezhhanfar S., Mogaddam A.R.M. Facile Preparation of graphene-modified magnetic nanoparticles and their application in the analysis of four anti-depressant drugs in plasma and urine // ImmunoAnalysis. 2023. V. 3. № 4. https://doi.org/10.34172/ia.2023.04
  3. Zhao L.-Y., Zhao L.-L., You X.-Y., Zheng X.-X., Du Y., Tang Q.-D. Development and evaluation of a simple and easy high-performance liquid chromatography–ultraviolet system simultaneously suitable for determination of 24 anti-epileptic drugs in plasma // J. Sep. Sci. 2022. V. 45. № 13. P. 2161. https://doi.org/10.1002/jssc.202200246
  4. Haiyan L., Binbin C., Xiangzhen X., Chunyan Z., Chunling M., Yu D., et al. Rapid simultaneous determination of 14 antidepressants and 13 antipsychotics in human plasma by using high-performance liquid chromatography-tandem mass spectrometry with dynamic multiple reaction monitoring and its application to therapeutic drug monitoring // Ther. Drug Monit. 2021. V. 43. № 4. P. 577. https://doi.org/10.1097/FTD.0000000000000839
  5. Guzinski M., Lindner E., Pendley B., Chaum E. Electrochemical sensor for tricyclic antidepressants with low nanomolar detection limit: Quantitative determination of amitriptyline and nortriptyline in blood // Talanta. 2022. V. 239. Article 123072. https://doi.org/10.1016/j.talanta.2021.123072
  6. Oliveira de M.F., Scheel L.G., Augusti R., Tarley T.R.C., Nascentes C.C. Supramolecular microextraction combined with paper spray ionization mass spectrometry for sensitive determination of tricyclic antidepressants in urine // Anal. Chim. Acta. 2020. V. 1106. P. 52. https://doi.org/10.1016/j.aca.2020.01.061
  7. Oenning L.A., Birk L., Eller S., Oliveira de F.T., Merib J., Carasek E. A green and low-cost method employing switchable hydrophilicity solvent for the simultaneous determination of antidepressants in human urine by gas chromatography – mass spectrometry detection // J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2020. V. 1143. Article 122069. https://doi.org/10.1016/j.jchromb.2020.122069
  8. Zaher El A.A., Kady El F.E., Messiry EL M.H., Ghwas El E.H., Houssini El M.O. Synchronous LC-MS/MS determination of pantoprazole and amitriptyline in rabbit plasma: Application to comparative in vivo pharmacokinetic study of novel formulated effervescent granules with its marketed tablet dosage form // Heliyon. 2021. V. 7. № 8. Article e07752. https://doi.org/10.1016/j.heliyon.2021.e07752
  9. Vejar-Vivar C., Bustamante L., Lucena R., Ortega C., Valenzuela M., Mardones C. Direct coupling of MEPS to ESI-QqTOF-MS for the simultaneous analysis of tricyclic antidepressants and benzodiazepines in postmortem blood // Microchem. J. 2021. V. 171. Article 106797. https://doi.org/10.1016/j.microc.2021.106797
  10. Yuan J., Huang W., Tong W., Chen Z., Li H., Chen J., Lin Z. In-situ growth of covalent organic framework on stainless steel needles as solid-phase microextraction probe coupled with electrospray ionization mass spectrometry for rapid and sensitive determination of tricyclic antidepressants in biosamples // J. Chromatogr. A. 2023. V. 1695. Article 463955. https://doi.org/10.1016/j.chroma.2023.463955
  11. Krieg K.A., Gauglitz G. Ultrasensitive label-free immunoassay for optical determination of amitriptyline and related tricyclic antidepressants in human serum // Anal. Chem. 2015. V. 87. № 17. P. 8845. https://doi.org/10.1021/acs.analchem.5b0189
  12. Seyfinejad B., Jouyban A. Overview of therapeutic drug monitoring of immunosuppressive drugs: Analytical and clinical practices // J. Pharm. Biomed. Anal. 2021. V. 205. Article 114315. https://doi.org/10.1016/j.jpba.2021.114315
  13. Ahmed A., Singh A., Young Sh.-J., Gupta V., Singh M., Arya S. Synthesis techniques and advances in sensing applications of reduced graphene oxide (rGO) Composites: A review // Composites. Part A. 2023. V. 165. Article 107373. https://doi.org/10.1016/j.compositesa.2022.107373
  14. Swetha P.D.P., Nikitha A., Shenoy M.M., Shim Y.-B., Prasad K.S. Ni/Ni(OH)2-rGO nanocomposites sensor for the detection of long forgotten mycotoxin, xanthomegnin // Talanta. 2023. V. 253. Article 123953. https://doi.org/10.1016/j.talanta.2022.123953
  15. Kalkal A., Pradhan R., Packirisamy G. Gold nanoparticles modified reduced graphene oxide nanosheets based dual-quencher for highly sensitive detection of carcinoembryonic antigen // Int. J. Biol. Macromol. 2023. V. 242. Article 125157. https://doi.org/10.1016/j.ijbiomac.2023.125157
  16. Muthu D., Govindaraj R., Manikandan M., Ramasamy P., Haldorai Y., Kumar R.T.R. Reduced graphene oxide supported monoclinic bismuth vanadate nanoparticles as an electrocatalyst for selective determination of dopamine in human urine samples // Mater. Chem. Phys. 2023. V. 297. Article 127437. https://doi.org/10.1016/j.matchemphys.2023.127437
  17. Kumar S., Singh D., Pathania D., Awasthi A., Singh K. Molybdenum disulphide-nitrogen doped reduced graphene oxide heterostructure based electrochemical sensing of epinephrine // Mater. Chem. Phys. 2023. V. 297. Article 127446. https://doi.org/10.1016/j.matchemphys.2023.127446
  18. Alinejadian N., Kazemi S.H., Nasirpouri F., Odnevall I. Electro-deposited nano-Ni/reduced graphene oxide composite film of corrugated surface for high voltammetric sensitivity // Mater. Chem. Phys. 2023. V. 297. Article 127288. https://doi.org/10.1016/j.matchemphys.2022.127288
  19. Kalyani T., Sangili A., Kotal H., Kaushik A., Chaudhury K., Jana S.K. Ultra-sensitive label-free detection of haptoglobin using Au-rGO decorated electrochemical sensing platform: Towards endometriosis diagnostic application // Biosens. Bioelectron. X. 2023. V 14. Article 100353. https://doi.org/10.1016/j.biosx.2023.100353
  20. Tan Y.-Y., Tan H.-S., Liu M., Li S.-S. Electrochemical ratiometric dual-signal immunoassay for accurate detection of carcinoembryonic antigen in clinical serum based on rGO-Pd@Au-Thi and Chi-Fc-Au // Sens. Actuators B. 2023. V. 380. Article 133340. https://doi.org/10.1016/j.snb.2023.133340
  21. Nguyen K.T.N., Lebastard C., Wilmet M., Dumait N., Renaud A., Cordier S., Ohashi N., Uchikoshi T., Grasset F. A review on functional nanoarchitectonics nanocomposites based on octahedral metal atom clusters (Nb6, Mo6, Ta6, W6, Re6): Inorganic 0D and 2D powders and films // Sci. Technol. Adv. Mater. 2022. V. 23. № 1. P. 547. https://doi.org/10.1080/14686996.2022.2119101
  22. Медянцева Э.П., Брусницын Д. В., Газизуллина Э.Р., Бейлинсон Р.М., Еремин С.А., Кутырева М.П., Улахович Н.А., Будников Г.К. Наноразмерные материалы в составе биосенсоров для определения амитриптилина // Заводск. лаборатория. Диагностика материалов. 2021. Т. 87. № 9. C. 20. (Medyantseva E.P., Brusnitsyn D.V., Gazizullina E.R., Beylinson R.M., Eremin S.A., Kutyreva M.P., Ulakhovich N.A., Budnikov H.K. Nanoscale materials in the composition of biosensors for the determination of amitriptyline // Ind. Lab. Diagn. Mater. 2021. V. 87. № 9. P. 20.) https://doi.org/10.26896/1028-6861-2021-87-9-20-29
  23. Медянцева Э.П., Газизуллина Э.Р., Брусницын Д.В., Зиганшин М.А., Елистратова Ю.Г., Мустафина А.Р., Брылев К.А., Будников Г.К. Нанокластеры рения как модификаторы иммуносенсоров при определении трициклических антидепрессантов // Журн. аналит. химии. 2021. Т. 76. № 12. С. 1123. (Medyantseva E.P., Gazizullina E.R., Brusnitsyn D.V., Ziganshin M.A., Elistratova Yu.G., Mustafina A.R., Brylev K.A., Budnikov H.C. Rhenium nanoclusters as modifiers of immunosensors in the determination of tricyclic antidepressants // J. Anal. Chem. 2021. V. 76. № 4. P. 1455.) https://doi.org/10.31857/S0044450221120070
  24. Медянцева Э.П., Газизуллина Э.Р., Брусницын Д.В., Федоренко С.В., Мустафина А.Р., Еремин С.А. Определение амитриптилина методом поляризационного флуоресцентного иммуноанализа // Журн. аналит. химии. 2022. Т. 77. № 9. С. 828. (Medyantseva E.P., Gazizullina E.R., Brusnitsyn D.V., Fedorenko S.V., Mustafina A.R., Eremin S.A. Determination of amitriptyline by fluorescence polarization immunoassay // J. Anal. Chem. 2022. V. 77. № 9. P. 1147.) https://doi.org/10.31857/S0044450222070088
  25. Mikhailov M.A., Brylev K.A., Abramov P.A., Sokolov M.N., Sakuda E., Kitamura N., et al. Synthetic tuning of redox, spectroscopic, and photophysical properties of {Mo6I8}4+ core cluster complexes by terminal carboxylate ligands // Inorg. Chem. 2016. V. 55. № 17. P. 8437. https://doi.org/10.1021/acs.inorgchem.6b01042
  26. Медянцева Э.П., Газизуллина Э.Р., Брусницын Д.В., Добрынин А.Б., Брылев К.А., Мустафина А.Р., Елистратова Ю.Г. Амперометрические иммуносенсоры на основе углеродных наноматериалов и кластеров рения для определения трициклических антидепрессантов в последовательной инжекционной системе // Аналитика и контроль. 2022. T. 26. № 4. С. 255. https://doi.org/10.15826/analitika.2022.26.4.002
  27. Elistratova J.G., Kholin K.V., Nizameev I.R., Khazieva A.R., Gubaidullin A.T., Voloshina A.D., et al. Anticancer potential of hexamolybdenum clusters [{Mo6I8}(L)6]2– (L = CF3COO– and C6F5COO–) incorporated into different nanoparticulate forms // J. Mol. Liq. 2021. V. 343. Article 117601. https://doi.org/10.1016/j.molliq.2021.117601
  28. Kirakci K., Kubát P., Dusek M., Fejfarová K., Šícha V., Mosinger J., Lang K. A highly luminescent Hexanuclear molybdenum cluster – A promising candidate toward photoactive materials // Eur. J. Inorg. Chem. 2012. V. 2012. № 19. P. 3107. https://doi.org/10.1002/ejic.201200402
  29. Deswal R., Narwal V., Kumar P., Verma V., Dang A.S., Pundir C.S. An improved amperometric sarcosine biosensor based on graphene nanoribbon/chitosan nanocomposite for detection of prostate cancer // Sens. Int. 2022. V. 3. Article 100174. https://doi.org/10.1016/j.sintl.2022.100174
  30. El-Shafai N.M., Shukry M., Sharshir S.W., Ramadan M.S., Alhadhrami A., El-Mehasse I. Advanced applications of the nanohybrid membrane of chitosan/nickel oxide for photocatalytic, electro-biosensor, energy storage, and supercapacitors // J. Energy Storage. 2022. V. 50. Article 104626. https://doi.org/10.1016/j.est.2022.104626

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024