Signal Separation from Thermal Neutrons in Electron–Neutron Detectors Using Convolutional Neural Nets in the ENDA Experiment
- Authors: Kurinov K.O1, Kuleshov D.A1, Lagutkina A.A2, Sten'kin Y.V1,2, Shchegolev O.B1,2
- 
							Affiliations: 
							- Institute for Nuclear Research, Russian Academy of Sciences
- Moscow Institute of Physics and Technology
 
- Issue: Vol 163, No 4 (2023)
- Pages: 524-530
- Section: Articles
- URL: https://cardiosomatics.ru/0044-4510/article/view/653531
- DOI: https://doi.org/10.31857/S0044451023040090
- EDN: https://elibrary.ru/LVJOHJ
- ID: 653531
Cite item
Abstract
The electron–neutron detector array (ENDA) is being created in China within the large high-altitude air shower observatory (LHAASO) project. The concept of the array is to simultaneously record the electromagnetic and hadronic components of extensive air showers (EAS) with EN detectors. To estimate the number of hadrons in an EAS, the array detectors record secondary thermal neutrons delayed relative to the shower front. Some of the delayed pulses are created by the simultaneous passage of several charged particles through the scintillator (the signal from one particle lies below the detection threshold) and by the photomultiplier noise. We propose a neutron pulse separation method for EN detectors using convolutional neural networks and make a comparison with the baseline method being currently applied at the installation.
About the authors
K. O Kurinov
Institute for Nuclear Research, Russian Academy of Sciences
														Email: kyrinov.ko@gmail.com
				                					                																			                												                								117312, Moscow, Russia						
D. A Kuleshov
Institute for Nuclear Research, Russian Academy of Sciences
														Email: kyrinov.ko@gmail.com
				                					                																			                												                								117312, Moscow, Russia						
A. A Lagutkina
Moscow Institute of Physics and Technology
														Email: kyrinov.ko@gmail.com
				                					                																			                												                								141701, Dolgoprudnyi, Moscow oblast, Russia						
Yu. V Sten'kin
Institute for Nuclear Research, Russian Academy of Sciences; Moscow Institute of Physics and Technology
														Email: kyrinov.ko@gmail.com
				                					                																			                												                								117312, Moscow, Russia; 141701, Dolgoprudnyi, Moscow oblast, Russia						
O. B Shchegolev
Institute for Nuclear Research, Russian Academy of Sciences; Moscow Institute of Physics and Technology
							Author for correspondence.
							Email: kyrinov.ko@gmail.com
				                					                																			                												                								117312, Moscow, Russia; 141701, Dolgoprudnyi, Moscow oblast, Russia						
References
- Yu. V. Stenkin, Nucl. Phys. B Proc. Suppl. 196, 293 (2009).
- O. B. Shchegolev, V. V. Alekseenko, D. A. Kuleshov et al., J. Phys. Conf. Ser. 1690 (2020).
- Yu. V. Stenkin, V. V. Alekseenko, Danzengluobu et al., Bull.Russ. Acad. Sci. Phys. 85, 405 (2021).
- О. Б. Щеголев, В. В. Алексеенко, Ю. В. Стенькин и др., Изв. РАН, сер. физ. 83, 691 (2019).
- Ю. В. Стенькин, О. Б. Щеголев, Изв. РАН, сер. физ. 81, 541 (2017).
- Yu. V. Stenkin, V. V. Alekseenko, D. M. Gromushkin et al., Chinese Phys. C 37, 015001 (2013).
- G. Ranucci, Nucl. Instr. Meth. A 354, 389 (1995).
- F. Pino, L. Stevanato, D. Cester et al., J. Instrument. 10, T08005 (2015).
- J. K. Polack, M. Flaska, A. Enqvist et al., Nucl. Instr. Meth. A 795, 253 (2015).
- E. Doucet, T. Brown, P. Chowdhury et al., Nucl. Instr. Meth. A 954, 161201 (2020).
- T. S. Sanderson, C. D. Scott, M. Flaska et al., IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), 199 (2012).
- J. Gri ths, S. Kleinegesse, D. Saunders et al., Machine Learning: Science and Technology 1, 045022 (2020).
- Д. М. Громушкин, А. А. Петрухин, Ю. В. Стенькин и др., Изв. РАН, сер. физ. 73, 425 (2009).
- Ю. В. Стенькин, В. В. Алексеенко, А. С. Багрова и др., Изв. РАН, сер. физ. 81, 179 (2017).
- W. S. Cleveland, American Statistician 35, 54 (1981).
- P. Refaeilzadeh, L. Tang, and H. Liu, Encyclopedia of Database Systems 5, 532 (2009).
- A. Paszke, S. Gross, F. Massa et al., Advances in Neural Information Processing Systems 32, 8026 (2019).
- J. Deng, J. Guo, T. Liu et al., arXiv: 1801.07698.
- L. Van der Maaten and G. Hinton, J. Machine Learning Res. 9, 2579 (2008).
- D. P. Kingma and J. Ba, arXiv:1412.6980.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					