Signal Separation from Thermal Neutrons in Electron–Neutron Detectors Using Convolutional Neural Nets in the ENDA Experiment
- Авторлар: Kurinov K.O1, Kuleshov D.A1, Lagutkina A.A2, Sten'kin Y.V1,2, Shchegolev O.B1,2
- 
							Мекемелер: 
							- Institute for Nuclear Research, Russian Academy of Sciences
- Moscow Institute of Physics and Technology
 
- Шығарылым: Том 163, № 4 (2023)
- Беттер: 524-530
- Бөлім: Articles
- URL: https://cardiosomatics.ru/0044-4510/article/view/653531
- DOI: https://doi.org/10.31857/S0044451023040090
- EDN: https://elibrary.ru/LVJOHJ
- ID: 653531
Дәйексөз келтіру
Аннотация
The electron–neutron detector array (ENDA) is being created in China within the large high-altitude air shower observatory (LHAASO) project. The concept of the array is to simultaneously record the electromagnetic and hadronic components of extensive air showers (EAS) with EN detectors. To estimate the number of hadrons in an EAS, the array detectors record secondary thermal neutrons delayed relative to the shower front. Some of the delayed pulses are created by the simultaneous passage of several charged particles through the scintillator (the signal from one particle lies below the detection threshold) and by the photomultiplier noise. We propose a neutron pulse separation method for EN detectors using convolutional neural networks and make a comparison with the baseline method being currently applied at the installation.
Авторлар туралы
K. Kurinov
Institute for Nuclear Research, Russian Academy of Sciences
														Email: kyrinov.ko@gmail.com
				                					                																			                												                								117312, Moscow, Russia						
D. Kuleshov
Institute for Nuclear Research, Russian Academy of Sciences
														Email: kyrinov.ko@gmail.com
				                					                																			                												                								117312, Moscow, Russia						
A. Lagutkina
Moscow Institute of Physics and Technology
														Email: kyrinov.ko@gmail.com
				                					                																			                												                								141701, Dolgoprudnyi, Moscow oblast, Russia						
Yu. Sten'kin
Institute for Nuclear Research, Russian Academy of Sciences; Moscow Institute of Physics and Technology
														Email: kyrinov.ko@gmail.com
				                					                																			                												                								117312, Moscow, Russia; 141701, Dolgoprudnyi, Moscow oblast, Russia						
O. Shchegolev
Institute for Nuclear Research, Russian Academy of Sciences; Moscow Institute of Physics and Technology
							Хат алмасуға жауапты Автор.
							Email: kyrinov.ko@gmail.com
				                					                																			                												                								117312, Moscow, Russia; 141701, Dolgoprudnyi, Moscow oblast, Russia						
Әдебиет тізімі
- Yu. V. Stenkin, Nucl. Phys. B Proc. Suppl. 196, 293 (2009).
- O. B. Shchegolev, V. V. Alekseenko, D. A. Kuleshov et al., J. Phys. Conf. Ser. 1690 (2020).
- Yu. V. Stenkin, V. V. Alekseenko, Danzengluobu et al., Bull.Russ. Acad. Sci. Phys. 85, 405 (2021).
- О. Б. Щеголев, В. В. Алексеенко, Ю. В. Стенькин и др., Изв. РАН, сер. физ. 83, 691 (2019).
- Ю. В. Стенькин, О. Б. Щеголев, Изв. РАН, сер. физ. 81, 541 (2017).
- Yu. V. Stenkin, V. V. Alekseenko, D. M. Gromushkin et al., Chinese Phys. C 37, 015001 (2013).
- G. Ranucci, Nucl. Instr. Meth. A 354, 389 (1995).
- F. Pino, L. Stevanato, D. Cester et al., J. Instrument. 10, T08005 (2015).
- J. K. Polack, M. Flaska, A. Enqvist et al., Nucl. Instr. Meth. A 795, 253 (2015).
- E. Doucet, T. Brown, P. Chowdhury et al., Nucl. Instr. Meth. A 954, 161201 (2020).
- T. S. Sanderson, C. D. Scott, M. Flaska et al., IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), 199 (2012).
- J. Gri ths, S. Kleinegesse, D. Saunders et al., Machine Learning: Science and Technology 1, 045022 (2020).
- Д. М. Громушкин, А. А. Петрухин, Ю. В. Стенькин и др., Изв. РАН, сер. физ. 73, 425 (2009).
- Ю. В. Стенькин, В. В. Алексеенко, А. С. Багрова и др., Изв. РАН, сер. физ. 81, 179 (2017).
- W. S. Cleveland, American Statistician 35, 54 (1981).
- P. Refaeilzadeh, L. Tang, and H. Liu, Encyclopedia of Database Systems 5, 532 (2009).
- A. Paszke, S. Gross, F. Massa et al., Advances in Neural Information Processing Systems 32, 8026 (2019).
- J. Deng, J. Guo, T. Liu et al., arXiv: 1801.07698.
- L. Van der Maaten and G. Hinton, J. Machine Learning Res. 9, 2579 (2008).
- D. P. Kingma and J. Ba, arXiv:1412.6980.
Қосымша файлдар
 
				
			 
						 
					 
						 
						 
						

 
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу 
 Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді Рұқсат ақылы немесе тек жазылушылар үшін
		                                							Рұқсат ақылы немесе тек жазылушылар үшін
		                                					