The phase composition of Ni1-2хMnхCoхOy precursors, where x = 0–0.5, obtained in the solution combustion synthesis
- Authors: Nefedova K.V.1, Ermakova L.V.1, Zhuravlev V.D.1, Patrusheva T.A.1
-
Affiliations:
- The Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
- Issue: Vol 70, No 5 (2025)
- Pages: 660-667
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://cardiosomatics.ru/0044-457X/article/view/685469
- DOI: https://doi.org/10.31857/S0044457X25050051
- EDN: https://elibrary.ru/HYCFTA
- ID: 685469
Cite item
Abstract
The solution combustion synthesis obtained precursors of the composition Ni1–2хMnхCoхOy, where x = 0–0.5. The phase composition of the precursors was confirmed by X-ray phase analysis. The morphology of the samples was studied by scanning electron microscopy in combination with energy dispersion analysis. The change in the phase composition of precursors of mixed d-metal oxides from the synthesis conditions and the choice of annealing temperatures has been studied. The dependences of the content of NiO, Ni, MnCo2O4 in the composition of Ni1–2хMnхCoхOy precursors after SCS, after 550°C were studied. The dependence of the parameter a of the crystal lattice of the spinel phase on the composition of the sample after annealing at 550, 800 and 900°C has been established. Ni1–2хMnхCoхOy with x = 0.1–0.33 is monophase after annealing at 550°C.
Full Text

About the authors
K. V. Nefedova
The Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: nefedova@ihim.uran.ru
Russian Federation, Pervomaiskaya St., 91, Ekaterinburg, 620990
L. V. Ermakova
The Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
Email: nefedova@ihim.uran.ru
Russian Federation, Pervomaiskaya St., 91, Ekaterinburg, 620990
V. D. Zhuravlev
The Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
Email: nefedova@ihim.uran.ru
Russian Federation, Pervomaiskaya St., 91, Ekaterinburg, 620990
T. A. Patrusheva
The Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
Email: nefedova@ihim.uran.ru
Russian Federation, Pervomaiskaya St., 91, Ekaterinburg, 620990
References
- Guo J., Jiao L.F., Yuan H.T. et al. // Electrochim. Acta. 2006. V. 51. P. 3731. https://doi.org/10.1016/j.electacta.2005.10.037
- Kumar P.S., Sakunthala A., Reddy M.V. et al. // J. Solid State Electrochem. 2016. V. 20. P. 1865. https://doi.org/10.1007/s10008-015-3029-y
- Huang Z.-D., Liu X.-M., Zhang B. et al. // Scripta Mater. 2011. V. 64. P. 122. https://doi.org/10.1016/j.scriptamat.2010.09.018
- Samarasingha P., Tran-Nguyen D.-H., Behm M., Wijayasinghe A. // Electrochim. Acta. 2008. V. 53. P. 7995. https://doi.org/10.1016/j.electacta.2008.06.003
- Liang L., Du K., Peng Z. et al. // Electrochim. Acta. 2014. V. 130. P. 82. https://doi.org/10.1016/j.electacta.2014.02.100
- Elong K., Kasim M.F., Azahidi A., Osman Z. // Mater. Today: Proceedings. 2023. https://doi.org/10.1016/j.matpr.2023.02.283
- Zhuravlev V.D., Pachuev A.V., Nefedova K.V., Ermakova L.V. // Int. J. Self-Propag. High-Temp. Synth. 2018. V. 27. P. 154. https://doi.org/10.3103/S1061386218030147
- Lanina E.V., Zhuravlev V.D., Ermakova L.V. et al. // Electrochim. Acta. 2016. V. 212. P. 810. https://doi.org/10.1016/j.electacta.2016.07.010
- Остроушко А.А., Гагарин И.Д., Кудюков Е.В. и др. // Журн. неорган. химии. 2024. Т. 69. № 2. С. 143. https://doi.org/10.31857/S0044457X24020013
- Смирнова М.Н., Кондратьева О.Н., Никифорова Г.Е. и др. // Журн. неорган. химии. 2024. Т. 69. № 8. C. 1095. https://doi.org/10.31857/S0044457X24080012
- Нефедова К.В. Синтез оксида литий-никель-марганец-кобальта для литий-ионных аккумуляторов (ЛИА) в реакциях горения: дис…канд. хим. наук: 1.4.15. Екатеринбург, 2023. 130 с.
- Zhang S., Deng C., Fu B.L. et al. // Powder Technol. 2010. V. 198. P. 373. https://doi.org/10.1016/j.powtec.2009.12.002
- Li L., Song S., Zhang X. et al. // J. Power Sources. 2010. V. 272. P. 922. https://doi.org/10.1016/j.jpowsour.2014.08.063
- Martin De Vidales J.L., Garcia-Chain P., Rojas R.M. et al. // J. Mater. Sci. 1998. V. 33. P. 1491. https://doi.org/10.1023/A:1004351809932
- Duran P., Tartaj J., Rubio F. et al. // Ceram. Int. 2005. V. 31. P. 599. https://doi.org/10.1016/j.ceramint.2004.07.007
- Mhin S., Han H., Kim K.M. et al. // Ceram. Int. 2016. V. 42. P. 13654. https://doi.org/10.1016/j.ceramint.2016.05.161
- Журавлев В.Д., Халиуллин Ш.М., Ермакова Л.В., Бамбуров В.Г. // Журн. неорган. химии. 2020. Т. 65. № 10. С. 1317. https://doi.org/10.31857/S0044457X20100232
- Hadken S., Kalimila M.T., Rathkanthiwar S. et al. // Ceram. Int. 2015. V. 41. P. 14949. https://doi.org/10.1016/j.ceramint.2015.08.037
- Ashok A., Kumar A., Bhosale R.R. et al. // Ceram. Int. 2016. V. 42. P. 12771. https://doi.org/10.1016/j.ceramint.2016.05.035
- Zhao H., Liu L., Hu Z. et al. // Mater. Res. Bull. 2016. V. 77. P. 265. https://doi.org/10.1016/j.materresbull.2016.01.049
- Pendashteh A., Palma J., Anderson M., Marcilla R. // RSC Advances. 2016. V. 6. P. 28970. https://doi.org/10.1039/C6RA00960C
- Kim B.C., Rajesh M., Jang H.S. et al. // J. Alloys Compd. 2016. V. 674. P. 376. https://doi.org/10.1016/j.jallcom.2016.03.028
- Meena P.L., Kumar R., Sreenivas K. // Int. J. Phys., Chem. Math. Sci. 2014. V. 3. P. 7.
- Karuppaiah M., Sakthivel P., Asaithambi S. et al. // Ceram. Int. 2019. V. 45. P. 4298. https://doi.org/10.1016/j.ceramint.2018.11.104
- El Horr N., Guillemet-Fritsch S., Rousset A. et al. // J. Eur. Ceram. Soc. 2014. V. 34. P. 317. https://doi.org/10.1016/j.jeurceramsoc.2013.08.010
- Gaur A., Sglavo V.M. // J. Eur. Ceram. Soc. 2014. V. 34. P. 2391. https://doi.org/10.1016/j.jeurceramsoc.2014.02.012
- Han H., Lee J.S., Lim J. et al. // Ceram. Int. 2016. V. 42. P. 17168. https://doi.org/10.1016/j.ceramint.2016.08.006
- Barrett C.A., Evan E.B. // J. Am. Ceram. Soc. 1964. V. 47. P. 533. https://doi.org/10.1111/j.1151-2916.1964.tb13806.x
- Alburquenquea D., Troncoso L., Denardin J.C. et al. // Phys. Chem. Solids. 2019. V. 134. P. 89. https://doi.org/10.1016/j.jpcs.2019.05.031
- Dhandapani P., Nayak P.K., Maruthapillai A. // Mater. Chem. Phys. 2023. V. 297. P. 127287. https://doi.org/10.1016/j.matchemphys.2022.127287
- Ma Y., Bahout M., Peña O. et al. // Bol. Soc. Espan. Ceram. Vidrio. 2004. V. 43. P. 663. https://doi.org/10.3989/cyv.2004.v43.i3.472
- Wang W., Liu X., Gao F. et al. // Ceram. Int. 2007. V. 33. P. 459. https://doi.org/10.1016/j.ceramint.2005.10.010
- Deganello F., Tyagi A.K. // Prog. Cryst. Growth Charact. Mater. 2018. V. 64. P. 23. https://doi.org/10.1016/j.pcrysgrow.2018.03
- Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). Available at: www.url: https://www.icdd.com/pdf-2/ (accessed 15.02.2024).
- Liu L., Zhou Z., Liu X. et al. // Ceram. Int. 2021. V. 47. P. 35048. https://doi.org/10.1016/j.ceramint.2021.09.046
- Журавлев В.Д., Ермакова Л.В., Халиуллин Ш.М. и др. // Журн. неорган. химии. 2022. Т. 67. № 6. С. 717. https://doi.org/10.31857/S0044457X22060265
- Нефедова К.В., Журавлев В.Д. // Перспективные материалы. 2011. С. 380.
- Aukrust E., Muan A. // J. Am. Chem. Soc. 1963. V. 46. P. 511. https://doi.org/10.1111/j.1151-2916.1963.tb13790.x
- Adamczyk A., Bik M., Kruk A. et al. // J. Therm. Anal. Calorim. 2024. V. 149. P. 2561. https://doi.org/10.1007/s10973-023-12839-1
- Ben-Barak I., Obrovac M.N. // J. Electrochem. Soc. 2024. V. 171. P. 040535. https://doi.org/10.1149/1945-7111/ad3aa9
- Pimenta V., Sathiya M., Batuk D. et al. // Chem. Mater. 2017. V. 29. P. 9923. https://doi.org/10.1021/acs.chemmater.7b03230
Supplementary files
