The phase composition of Ni1-2хMnхCoхOy precursors, where x = 0–0.5, obtained in the solution combustion synthesis

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The solution combustion synthesis obtained precursors of the composition Ni1–2хMnхCoхOy, where x = 0–0.5. The phase composition of the precursors was confirmed by X-ray phase analysis. The morphology of the samples was studied by scanning electron microscopy in combination with energy dispersion analysis. The change in the phase composition of precursors of mixed d-metal oxides from the synthesis conditions and the choice of annealing temperatures has been studied. The dependences of the content of NiO, Ni, MnCo2O4 in the composition of Ni1–2хMnхCoхOy precursors after SCS, after 550°C were studied. The dependence of the parameter a of the crystal lattice of the spinel phase on the composition of the sample after annealing at 550, 800 and 900°C has been established. Ni1–2хMnхCoхOy with x = 0.1–0.33 is monophase after annealing at 550°C.

Texto integral

Acesso é fechado

Sobre autores

K. Nefedova

The Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: nefedova@ihim.uran.ru
Rússia, Pervomaiskaya St., 91, Ekaterinburg, 620990

L. Ermakova

The Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Email: nefedova@ihim.uran.ru
Rússia, Pervomaiskaya St., 91, Ekaterinburg, 620990

V. Zhuravlev

The Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Email: nefedova@ihim.uran.ru
Rússia, Pervomaiskaya St., 91, Ekaterinburg, 620990

T. Patrusheva

The Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Email: nefedova@ihim.uran.ru
Rússia, Pervomaiskaya St., 91, Ekaterinburg, 620990

Bibliografia

  1. Guo J., Jiao L.F., Yuan H.T. et al. // Electrochim. Acta. 2006. V. 51. P. 3731. https://doi.org/10.1016/j.electacta.2005.10.037
  2. Kumar P.S., Sakunthala A., Reddy M.V. et al. // J. Solid State Electrochem. 2016. V. 20. P. 1865. https://doi.org/10.1007/s10008-015-3029-y
  3. Huang Z.-D., Liu X.-M., Zhang B. et al. // Scripta Mater. 2011. V. 64. P. 122. https://doi.org/10.1016/j.scriptamat.2010.09.018
  4. Samarasingha P., Tran-Nguyen D.-H., Behm M., Wijayasinghe A. // Electrochim. Acta. 2008. V. 53. P. 7995. https://doi.org/10.1016/j.electacta.2008.06.003
  5. Liang L., Du K., Peng Z. et al. // Electrochim. Acta. 2014. V. 130. P. 82. https://doi.org/10.1016/j.electacta.2014.02.100
  6. Elong K., Kasim M.F., Azahidi A., Osman Z. // Mater. Today: Proceedings. 2023. https://doi.org/10.1016/j.matpr.2023.02.283
  7. Zhuravlev V.D., Pachuev A.V., Nefedova K.V., Ermakova L.V. // Int. J. Self-Propag. High-Temp. Synth. 2018. V. 27. P. 154. https://doi.org/10.3103/S1061386218030147
  8. Lanina E.V., Zhuravlev V.D., Ermakova L.V. et al. // Electrochim. Acta. 2016. V. 212. P. 810. https://doi.org/10.1016/j.electacta.2016.07.010
  9. Остроушко А.А., Гагарин И.Д., Кудюков Е.В. и др. // Журн. неорган. химии. 2024. Т. 69. № 2. С. 143. https://doi.org/10.31857/S0044457X24020013
  10. Смирнова М.Н., Кондратьева О.Н., Никифорова Г.Е. и др. // Журн. неорган. химии. 2024. Т. 69. № 8. C. 1095. https://doi.org/10.31857/S0044457X24080012
  11. Нефедова К.В. Синтез оксида литий-никель-марганец-кобальта для литий-ионных аккумуляторов (ЛИА) в реакциях горения: дис…канд. хим. наук: 1.4.15. Екатеринбург, 2023. 130 с.
  12. Zhang S., Deng C., Fu B.L. et al. // Powder Technol. 2010. V. 198. P. 373. https://doi.org/10.1016/j.powtec.2009.12.002
  13. Li L., Song S., Zhang X. et al. // J. Power Sources. 2010. V. 272. P. 922. https://doi.org/10.1016/j.jpowsour.2014.08.063
  14. Martin De Vidales J.L., Garcia-Chain P., Rojas R.M. et al. // J. Mater. Sci. 1998. V. 33. P. 1491. https://doi.org/10.1023/A:1004351809932
  15. Duran P., Tartaj J., Rubio F. et al. // Ceram. Int. 2005. V. 31. P. 599. https://doi.org/10.1016/j.ceramint.2004.07.007
  16. Mhin S., Han H., Kim K.M. et al. // Ceram. Int. 2016. V. 42. P. 13654. https://doi.org/10.1016/j.ceramint.2016.05.161
  17. Журавлев В.Д., Халиуллин Ш.М., Ермакова Л.В., Бамбуров В.Г. // Журн. неорган. химии. 2020. Т. 65. № 10. С. 1317. https://doi.org/10.31857/S0044457X20100232
  18. Hadken S., Kalimila M.T., Rathkanthiwar S. et al. // Ceram. Int. 2015. V. 41. P. 14949. https://doi.org/10.1016/j.ceramint.2015.08.037
  19. Ashok A., Kumar A., Bhosale R.R. et al. // Ceram. Int. 2016. V. 42. P. 12771. https://doi.org/10.1016/j.ceramint.2016.05.035
  20. Zhao H., Liu L., Hu Z. et al. // Mater. Res. Bull. 2016. V. 77. P. 265. https://doi.org/10.1016/j.materresbull.2016.01.049
  21. Pendashteh A., Palma J., Anderson M., Marcilla R. // RSC Advances. 2016. V. 6. P. 28970. https://doi.org/10.1039/C6RA00960C
  22. Kim B.C., Rajesh M., Jang H.S. et al. // J. Alloys Compd. 2016. V. 674. P. 376. https://doi.org/10.1016/j.jallcom.2016.03.028
  23. Meena P.L., Kumar R., Sreenivas K. // Int. J. Phys., Chem. Math. Sci. 2014. V. 3. P. 7.
  24. Karuppaiah M., Sakthivel P., Asaithambi S. et al. // Ceram. Int. 2019. V. 45. P. 4298. https://doi.org/10.1016/j.ceramint.2018.11.104
  25. El Horr N., Guillemet-Fritsch S., Rousset A. et al. // J. Eur. Ceram. Soc. 2014. V. 34. P. 317. https://doi.org/10.1016/j.jeurceramsoc.2013.08.010
  26. Gaur A., Sglavo V.M. // J. Eur. Ceram. Soc. 2014. V. 34. P. 2391. https://doi.org/10.1016/j.jeurceramsoc.2014.02.012
  27. Han H., Lee J.S., Lim J. et al. // Ceram. Int. 2016. V. 42. P. 17168. https://doi.org/10.1016/j.ceramint.2016.08.006
  28. Barrett C.A., Evan E.B. // J. Am. Ceram. Soc. 1964. V. 47. P. 533. https://doi.org/10.1111/j.1151-2916.1964.tb13806.x
  29. Alburquenquea D., Troncoso L., Denardin J.C. et al. // Phys. Chem. Solids. 2019. V. 134. P. 89. https://doi.org/10.1016/j.jpcs.2019.05.031
  30. Dhandapani P., Nayak P.K., Maruthapillai A. // Mater. Chem. Phys. 2023. V. 297. P. 127287. https://doi.org/10.1016/j.matchemphys.2022.127287
  31. Ma Y., Bahout M., Peña O. et al. // Bol. Soc. Espan. Ceram. Vidrio. 2004. V. 43. P. 663. https://doi.org/10.3989/cyv.2004.v43.i3.472
  32. Wang W., Liu X., Gao F. et al. // Ceram. Int. 2007. V. 33. P. 459. https://doi.org/10.1016/j.ceramint.2005.10.010
  33. Deganello F., Tyagi A.K. // Prog. Cryst. Growth Charact. Mater. 2018. V. 64. P. 23. https://doi.org/10.1016/j.pcrysgrow.2018.03
  34. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). Available at: www.url: https://www.icdd.com/pdf-2/ (accessed 15.02.2024).
  35. Liu L., Zhou Z., Liu X. et al. // Ceram. Int. 2021. V. 47. P. 35048. https://doi.org/10.1016/j.ceramint.2021.09.046
  36. Журавлев В.Д., Ермакова Л.В., Халиуллин Ш.М. и др. // Журн. неорган. химии. 2022. Т. 67. № 6. С. 717. https://doi.org/10.31857/S0044457X22060265
  37. Нефедова К.В., Журавлев В.Д. // Перспективные материалы. 2011. С. 380.
  38. Aukrust E., Muan A. // J. Am. Chem. Soc. 1963. V. 46. P. 511. https://doi.org/10.1111/j.1151-2916.1963.tb13790.x
  39. Adamczyk A., Bik M., Kruk A. et al. // J. Therm. Anal. Calorim. 2024. V. 149. P. 2561. https://doi.org/10.1007/s10973-023-12839-1
  40. Ben-Barak I., Obrovac M.N. // J. Electrochem. Soc. 2024. V. 171. P. 040535. https://doi.org/10.1149/1945-7111/ad3aa9
  41. Pimenta V., Sathiya M., Batuk D. et al. // Chem. Mater. 2017. V. 29. P. 9923. https://doi.org/10.1021/acs.chemmater.7b03230

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Change in the content of phases (wt.%) NiO, Ni and spinel in the composition of precursors Ni1–2xMnxCoxOy depending on the mole fraction (x) of manganese and cobalt: a – after SCS, b – after 550°C.

Baixar (106KB)
3. Fig. 2. Diffraction pattern of the Ni0.7Mn0.15Co0.15Oy sample after SCS.

Baixar (65KB)
4. Fig. 3. Dependences of the parameter a of the crystal lattice of the spinel phase in the composition of Ni1–2хMnхCoхOy on the mole fraction (x) of manganese and cobalt: a – in the two-phase region at 550 and 900°C; b – in the region of solid solutions with a spinel structure at 550 and 900°C.

Baixar (100KB)
5. Fig. 4. Dependences of the parameter a of the crystal lattice of the NiO-based phase in the composition Ni1–2хMnхCoхOy on the mole fraction (x) of manganese and cobalt after annealing at 550, 800 and 900°C (a) and the mass fraction of the NiO-based phase in the composition Ni1–2хMnхCoхOy on the mole fraction (x) of manganese and cobalt after annealing at 550 and 800°C (b).

Baixar (103KB)
6. Fig. 5. Ni0.4Mn0.3Co0.3Oy sample: a – SEM image; b – distribution of Co, Mn and Ni in the sample; c – EDX analysis.

Baixar (864KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025