Copper(II) succinate: electrochemical synthesis, characterization and application as a precursor for micron-sized copper(II) oxide fibers

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A coordination compound of copper(II) with succinic acid was obtained by electrochemical synthesis in media of various compositions. The samples were characterized by methods of quantitative analysis, ESR and IR spectroscopy, synchronous thermal analysis. The vibrational frequencies of copper(II) succinate were calculated by using DFT and the experimental IR spectra were interpreted on the basis of the results. Micro-sized copper(II) oxide fibers were obtained by thermal decomposition of synthesized samples. It was shown that the use of the water–dimethyl sulfoxide system with a volume ratio 1:1 is optimal to achieve the formation of moderately aggregated particles with a distinct filamentous morphology.

全文:

受限制的访问

作者简介

E. Andriychenko

Kuban State University

编辑信件的主要联系方式.
Email: leka91@mail.ru
ORCID iD: 0000-0002-2324-8987
俄罗斯联邦, Krasnodar

V. Zelenov

Kuban State University

Email: leka91@mail.ru
ORCID iD: 0000-0003-3031-3844
俄罗斯联邦, Krasnodar

A. Bespalov

Kuban State University

Email: leka91@mail.ru
ORCID iD: 0000-0002-9829-9674
俄罗斯联邦, Krasnodar

V. Bovyka

Kuban State University

Email: leka91@mail.ru
ORCID iD: 0000-0001-9419-0818
俄罗斯联邦, Krasnodar

Е. Panina

Kuban State University

Email: leka91@mail.ru
俄罗斯联邦, Krasnodar

V. Volynkin

Kuban State University

Email: leka91@mail.ru
ORCID iD: 0000-0002-3352-9862
俄罗斯联邦, Krasnodar

N. Bukov

Kuban State University

Email: leka91@mail.ru
ORCID iD: 0000-0001-8559-110X
俄罗斯联邦, Krasnodar

参考

  1. Jia S., Wang Y., Liu X., Zhao S., Zhao W., Huang Y., Li Z., Lin Z. // Nano Energy. 2019. Vol. 59. P. 229. doi: 10.1016/j.nanoen.2019.01.081
  2. Wan M., Jin D., Feng R., Si L., Gao M., Yue L. // Inorg. Chem. Commun. 2011. Vol. 14. P. 38. doi 10.1016/ j.inoche.2010.09.025
  3. Yeoh J.S., Armer C.F., Lowe A. // Mater. Today Energy. 2018. Vol. 9. P. 198. doi: 10.1016/J.MTENER.2018.05.010
  4. Hameed M.U., Khan Y., Ali S., Wu Z., Dar S.U., Song H., Ahmad A., Chen Y. // Ceram. Int. 2017. Vol. 43. N 1(A). P. 741. doi: 10.1016/j.ceramint.2016.10.003
  5. Feng L., Xuan Zh., Bai Y., Zhao H., Li L., Chen Y., Yang X., Su Ch., Guo J., Chen X. // J. Alloys Compd. 2014. Vol. 600. P. 162. doi: 10.1016/j.jallcom.2014.02.132
  6. Anu Prathap M.U., Kaur B., Srivastava R. // J. Colloid Interface Sci. 2012. Vol. 370. P. 144. doi 10.1016/ j.jcis.2011.12.074
  7. Siddiqui H., Qureshi M.S., Haque F.Z. // Optik. 2016. Vol. 127. P. 2740. doi: 10.1016/j.ijleo.2015.11.220
  8. Rao M.P., Ponnusamy V.K., Wu J.J., Asiri A.M., Anandan S. // J. Environ. Chem. Eng. 2018. Vol. 6. P. 6059. doi: 10.1016/j.jece.2018.09.041
  9. Андрийченко Е.О., Зеленов В.И., Бовыка В.Е., Буков Н.Н. // ЖОХ. 2021. Т. 91. № 4. С. 638. doi: 10.31857/S0044460X2104020X; Andriychenko E.O., Zelenov V.I., Bovyka V.E., Bukov N.N. // Russ. J. Gen. Chem. 2021. Vol. 91. N 4. P. 707. doi: 10.1134/S1070363221040204
  10. Bhosale M.A., Karekar S.C., Bhanage B.M. // ChemistrySelect. 2016. Vol. 1. N 19. P. 6297. doi: 10.1002/slct.201601484
  11. Ganguly A., Ahmad T., Ganguli A.K. // Dalton Trans. 2009. Vol. 18. P. 3536. doi: 10.1039/B820778J
  12. Das S., Srivastava V.Ch. // Mater. Lett. 2015. Vol. 150. P. 130. doi: 10.1016/j.matlet.2015.03.018
  13. Rodríguez A., García-Vázquez J.A. // Coord. Chem. Rev. 2015. Vol. 303. P. 42. doi: 10.1016/j.ccr.2015.05.006
  14. Андрийченко Е.О., Зеленов В.И., Беспалов А.В., Бовыка В.Е., Буков Н.Н. // ЖОХ. 2021. Т. 91. № 9. С. 1416. doi: 10.31857/S0044460X21090134; Andriychenko E.O., Zelenov V.I., Bespalov A.V., Bovyka V.E., Bukov N.N. // Russ. J. Gen. Chem. 2021. Vol. 91. N 9. P. 1697. doi: 10.1134/S1070363221090139
  15. Cаргисян С.А., Саргсян Т.С., Агаджанян И.Г., Хизанцян К.М., Саркисян А.С., Маргарян К.С. // ЖОХ. 2020. Т. 90. Вып. 6. С. 906; Sargsyan S.H., Sargsyan T.S., Agadjanyan I.G., Khizantsyan K.M., Sargsyan A.S., Margaryan K.S. // Russ. J. Gen. Chem. 2020. Vol. 90. N 6. P. 906. doi: 10.31857/S0044460X20060108
  16. Ghoshal D., Ghosh A.K., Mostafa G., Ribas J., Chaudhuri N.R. // Inorg. Chim. Acta. 2007. Vol. 360. P. 1771. doi: 10.1016/j.ica.2006.08.054
  17. Kawata S., Kitagawa S., Machida H., Nakamoto T., Kondo M., Katada M., Kikuchi K., Ikemoto I. // Inorg. Chim. Acta. 1995. Vol. 229. P. 211. doi: 10.1016/0020-1693(94)04247-S
  18. Ghoshal D., Maji T.K., Mostafa G., Sain S., Lu T.-H., Ribas J., Zangrando E., Chaudhuri N.R. // Dalton Trans. 2004. Vol. 11. P. 1687. doi: 10.1039/b401738b
  19. Kawata S., Kitagawa S., Enomoto M., Kumagai H., Katada M. // Inorg. Chim. Acta. 1998. P. 80. doi: 10.1016/S0020-1693(98)00223-0
  20. González Garmendia M.J., San Nacianceno V., Seco J.M., Zúñiga F.J. // Acta Crystallogr. (C). 2009. Vol. 65. P. m436. doi: 10.1107/S0108270109040566
  21. O’Connor B.H., Maslen E.N. // Acta Crystallogr. 1966. Vol. 20. P. 824. doi: 10.1107/S0365110X66001932
  22. Rastsvetaeva R.K., Pushcharovsky D.Yu., Furmanova N.G. // Z. Kristallogr. Cryst. Mater. 1996. Vol. 211. P. 808. doi: 10.1524/zkri.1996.211.11.808
  23. Asai O., Kishita M., Kubo M. // J. Phys. Chem. 1959. Vol. 63. N 1. P. 96. doi: 10.1021/j150571a024
  24. Jasien P.G., Dhar S.K. // J. Inorg. Nucl. Chem. 1980. Vol. 42. N 6. P. 924. doi: 10.1016/0022-1902(80)80471-4
  25. Ganguly A., Ahmad T., Ganguli A.K. // Dalton Trans. 2009. P. 3536. doi: 10.1039/b820778j
  26. Djeghri A., Balegroune F., Guehria-Laidoudi A., Roisnel T. // Z. Kristallogr. NCS. 2004. Vol. 219. P. 471. doi: 10.1524/ncrs.2004.219.14.503
  27. Binitha M.P., Pradyumnan P.P. // Bull. Mater. Sci. 2017. Vol. 40. N 5. P. 1007. doi: 10.1007/s12034-017-1459-0
  28. Kozlevčar B., Leban I., Petrič M., Petriček S., Roubeau O., Reedijk J., Šegedin P. // Inorg. Chim. Acta. 2004. Vol. 357. P. 4220. doi: 10.1016/j.ica.2004.06.012
  29. Harish S.P., Sobhanadri J. // Inorg. Chim. Acta. 1985. Vol. 108. P. 147. doi: 10.1016/S0020-1693(00)84533-8
  30. Shee N.K., Verma R., Kumar D., Datta D. // Comput. Theor. Chem. 2015. Vol. 1061. P. 1. doi 10.1016/ j.comptc.2015.03.003
  31. Sharrock P., Melnik M. // J. Coord. Chem. 1985. Vol. 14. P. 65. doi: 10.1080/00958978508080679
  32. Andersson M.P., Uvdal P. // J. Phys. Chem. (A). 2005. Vol. 109. P. 2937. doi: 10.1021/jp045733a
  33. Nikumbh A.K., Pardeshi S.K., Raste M.N. // Thermochim. Acta. 2001. Vol. 374. P. 115. doi: 10.1016/S0040-6031(01)00483-X
  34. ГОСТ 10896-78. Иониты. Подготовка к испытанию. М.: ИПК Изд. стандартов, 1998. 7 с.
  35. Neese F. // WIREs Comput. Mol. Sci. 2012. Vol. 2. P. 73. doi: 10.1002/wcms.81
  36. Neese F. // WIREs Comput. Mol. Sci. 2017. Vol. 8:e1327. P. 1. doi: 10.1002/wcms.1327
  37. Becke A. D. // Phys. Rev. (A). 1988. Vol. 38. P. 3098. doi: 10.1103/PhysRevA.38.3098
  38. Lee C., Yang W., Parr R. G. // Phys. Rev. (B). 1988. Vol. 37. P. 785. doi: 10.1103/PhysRevB.37.785
  39. Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. Vol. 32. P. 1456. doi: 10.1002/jcc.21759
  40. Allouche A.-R. // J. Comput. Chem. 2011. Vol. 32. P. 174. doi: 10.1002/jcc.21600

补充文件

附件文件
动作
1. JATS XML
2. Fig.1. EPR spectrum of a polycrystalline CuSuc–3 sample at 298 K.

下载 (51KB)
3. Fig.2. Optimized structure of a fragment of the copper(II) succinate polymer chain, calculation at the B3LYP-D3BJ/6-311G(d,p) level.

下载 (128KB)
4. Fig.3. TG–DSC curves for the CuSuc–3 sample.

下载 (134KB)
5. Fig.4. Electron microscopic images of fibers of the CuSuc–1 sample (a) and copper oxide obtained by its thermolysis at 400 (b) and 500°C (c).

下载 (213KB)
6. Fig.5. Electron microscopic images and histograms of the size distribution of copper(II) oxide microfibers: CuO–1 (a), CuO–2 (b), CuO–3 (c).

下载 (449KB)

版权所有 © Russian Academy of Sciences, 2024