Analogue of Kellogg’s Theorem for Piecewise Lyapunov Domains
- Authors: Soldatov A.P.1,2,3
- 
							Affiliations: 
							- Federal Research Center “Computer Science and Control,” Russian Academy of Sciences
- Moscow Center of Fundamental and Applied Mathematics, Lomonosov Moscow State University, Moscow, Russia
- National Research University “Moscow Power Engineering Institute”
 
- Issue: Vol 63, No 8 (2023)
- Pages: 1332-1342
- Section: Partial Differential Equations
- URL: https://cardiosomatics.ru/0044-4669/article/view/665000
- DOI: https://doi.org/10.31857/S0044466923080148
- EDN: https://elibrary.ru/WTNCGU
- ID: 665000
Cite item
Abstract
In weighted Hölder spaces, classes of smooth arcs and piecewise smooth contours are introduced that are invariant under power mappings. The boundary properties of conformal mappings are described in terms of these classes by analogy with Kellogg’s classical theorem.
About the authors
A. P. Soldatov
Federal Research Center “Computer Science and Control,” Russian Academy of Sciences; Moscow Center of Fundamental and Applied Mathematics, Lomonosov Moscow State University, Moscow, Russia; National Research University “Moscow Power Engineering Institute”
							Author for correspondence.
							Email: soldatov48@gmail.com
				                					                																			                												                								119333, Moscow, Russia; 111250, Moscow, Russia						
References
- Голузин Г.М. Геометрическая теория функций комплексного переменного. М.: Наука, 1972.
- Векуа И.Н. Обобщенные аналитические функции. 2-е изд., М.: Наука, 1988.
- Солдатов А.П. Сингулярные интегральные операторы и эллиптические краевые задачи // Современ. математика. Фундамент. направления. 2017. Т. 63. С. 1–189.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					