Dimolybdenum Perfluorotetrabenzoate and Silver Perfluorocyclohexanoate: Synthesis, Evaporation, and Thermodynamic Characteristics
- Autores: Kayumova D.B.1, Malkerova I.P.1, Yambulatov D.S.1, Sidorov A.A.1, Eremenko I.L.1, Alikhanyan A.S.1
- 
							Afiliações: 
							- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
 
- Edição: Volume 50, Nº 4 (2024)
- Páginas: 270-277
- Seção: Articles
- URL: https://cardiosomatics.ru/0132-344X/article/view/667607
- DOI: https://doi.org/10.31857/S0132344X24040057
- EDN: https://elibrary.ru/NPKEFD
- ID: 667607
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Anhydrous dimolybdenum perfluorotetrabenzoate Мо2(ООСС6F5)4 (I) and silver perfluorocyclohexanoate AgOOCC6F11 (II) are synthesized for the first time. Complex I is synthesized by the transcarboxylation of dimolybdenum tetraacetate with pentafluorobenzoic acid. Compound II is synthesized from freshly prepared silver oxide and perfluorocyclohexanoic acid. The evaporation of the complexes is studied by the Knudsen method with mass spectral analysis of the gas phase. The sublimation of Мо2(ООСС6F5)4 is congruent. The enthalpy of sublimation and the equation of the temperature dependence of the vapor pressure are found. The evaporation of AgOOCC6F11 is accompanied by the complete thermal decomposition with the formation of Ag(s) and mainly С6F12, С6F10, and CO2 molecules. The standard enthalpies of thermal decomposition (∆rH°298.15(5) = 439.5 Ѓ} 16.4 kJ/mol, (∆rH°298.15(6) = 325.2 Ѓ} 14.0 kJ/mol) and formation of the silver complex ((∆rH°298.15(AgOOCC6F11, c) = –2751.0 Ѓ} 24.4 kJ/mol) are determined.
Texto integral
 
												
	                        Sobre autores
D. Kayumova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: alikhan@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
I. Malkerova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: alikhan@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
D. Yambulatov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: alikhan@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
A. Sidorov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: alikhan@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
I. Eremenko
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: alikhan@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
A. Alikhanyan
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: alikhan@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Alikhanyan, A.S., Malkerova, I.P., Il′ina, E.G., et al., Zh. Neorg. Khim., 1993, vol. 38, no. 10, p. 1736.
- Kharitonenko, N.M., Rykov, A.N., Korenev, Yu.M., et al., Zh. Neorg. Khim., 1997, vol. 42, no. 7, p. 1359.
- Kiseleva E.A., Besedin D.V., and Krenev Yu.M., Zh. Neorg. Khim., 2005, vol. 79, no. 4, p. 629.
- Alikhanyan, A.S., Didenko, K.V., Girichev, G.V., et al., Struct. Chem., 2011, no. 22, p. 401. https://doi.org/10.1007/s11224-010-9722-7
- Malkerova, I.P., Kamkin, N.N., Dobrokhotova, Zh.V., et al., Russ. J. Inorg. Chem., 2014, vol. 59, no. 7, p. 665.
- Morozova, E.A., Malkerova, I.P., Kiskin, M.A., et al., Russ. J. Inorg. Chem., 2018, vol. 63, no. 11, p. 1436. https://doi.org/10.1134/S0036023618110128
- Malkerova, I.P., Belova, E.V., Kayumova, D.B., et al., Russ. J. Inorg. Chem., 2023, vol. 68, no. 5, p. 569. https://doi.org/10.1134/S0036023623600557
- Malkerova, I.P., Kayumova, D.B., Belova, E.V., et al., Russ. J. Coord. Chem., 2022, vol. 48, no. 2, p. 84. https://doi.org/10.1134/S107032842202004X
- Malkerova, I.P., Kayumova, D.B., Belova, E.V., et al., Russ. J. Coord. Chem., 2022, vol. 48, no. 10, p. 608. https://doi.org/10.1134/S1070328422100037
- Hochberg, E., Walks, P., and Abbott, E.H., Inorg. Chem., 1974, vol. 13, no. 8, p. 1824. https://doi.org/10.1021/ic50138a008
- Cotton, F.A., Murillo, C.A., and Walton, R.A., Multiple Bonds between Metal Atoms, New York: Springer, 2005.
- Cavell, J.J., Garner, C.D., Pilcher, G., and Parkes, S., J. Chem. Soc., Dalton Trans., 1979, p. 1714. https://doi.org/10.1039/DT9790001714
- Slyusareva, I.V., Kondrat′ev, Yu.V., Kozin, A.O., et al., Vestn. Sankt-Peterbkrgskogo un-ta. Fiz.-khim., 2007, no. 3, p. 138.
- Slyusareva, I.V., Kondrat′ev, Yu.V., Kozin, A.O., et al., Vestn. Sankt-Peterbkrgskogo un-ta. Fiz.-khim., 2008, no. 3, p. 64.
- Morozova, E.A., Dobrokhotova, Zh.V., and Alikhanyan, A.S., J. Therm. Anal. Calorim., 2017, vol. 130, no. 3, p. 2211. https://doi.org/10.1007/s10973-017-6583-y
- White, E., Org. Mass Spectrom., 1978, vol. 13, no. 9, p. 495. https://doi.org/10.1002./oms.121010903
- Matsumoto, K., Kosugi, Y., Yanagisawa, M., et al., Org. Mass Spectrom., 1980, vol. 15, no. 12, p. 606. https://doi.org/10.1002./oms.1210151203
- Hastic, J.W., Zmbov, K.F., and Margrave, J.L., J. Inorg. Nucl. Chem., 1968, vol. 30, no. 3, p. 729.
- Asano, M., Kou, T., and Yasue, Y., Non-Cryst. Solids, 1987, vol. 92, no. 2, p. 245. https://doi.org/10.1016/S0022-3093(87)80042-X
- Skudlarski, K., Drowart, J., Exsteen, G., et al., Trans. Faraday Soc., 1967, vol. 63, p. 1146. https://doi.org/10.1039/TF9676301146
- Sidorov, L.N. Mass-spektral′nye termodinamicheskie issledovaniya (Mass Spectral Thermodynamic Studies), Sidorov, L.N., Korobov, M.V., and Zhuravleva, L.V., Eds., Moscow: Mosk. Univ., 1985.
- NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Linstrom P.J., Mallard W.G., Eds., National Institute of Standards and Technology, Gaithersburg MD. https://doi.org/10.18434/T4D303
- Lines, D. and Sutcliffe, H., J. Fluorine Chem., 1984, vol. 25, p. 505. https://doi.org/10.1016/S0022-1139(00)81482-7
- LaZerte, J.D., Hals, L.J., Reid, T.S., and Smith, G.H., J. Am. Chem. Soc., 1953, vol. 75, p. 4525. https://doi.org/10.1021/ja01114a040
- Krusic, P.J., Marchione, A.A., and Roe, D.C., J. Fluorine Chem., 2005, vol. 126, p. 1510. https://doi.org/10.1016/j.jfluchem.2005.08.016
- Blake, P.G. and Pritchard, H., J. Chem. Soc. B, 1967, vol. 1, p. 282.
- Altarawneh, M., Almatarneh, M.H., and Dlugogorski, B.Z., Chemosphere, 2022, vol. 286, Pt. 2, p. 131685. https://doi.org/10.1016/j.chemosphere.2021.131685
- Price, S.J.W. and Sapiano, H.J., Can. J. Chem., 1979, vol. 57, no. 6, p. 685. https://doi.org/10.1139/v79-111
- Andreevskii, D.N. and Antonova, Z.A., J. Appl. Chem. USSR, 1982, vol. 55, no. 3, p. 582.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 


