Mixed-carboxylate cadmium–europium compounds with monocarboxylic acid anions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A series of mixed-carboxylate EuCd compounds with 1,10-phenanthroline (phen) and anions of benzoic H(Bz), pentabenzoic H(Pfb), 3,5-dinitrobenzoic H(3,5-Nbz), and 3,5-di-tert-butylbenzoic H(Dtbbz) acids is synthesized: [Eu2Cd2(Phen)2(Рfb)5,4(Bz)4,6].2MeCN (I), [Eu2(H2O)2Cd2(Phen)2(3,5-Nbz)4,1(Bz)5,9] (II) and [EuCd2(EtOH)4(Dtbbz)6(Pfb)] (III). The variation of combinations of aromatic anions makes it possible to reveal the influence of diverse factors on the compositions and structures of new compounds. In the case of benzoate‒pentafluorobenzoate compound I and 3,5-dinitrobenzoate‒benzoate compound II, the aromatic substituents of the anions have nonintegral populations and occupy close positions in the structure of the complex. The combination of the more bulky 3,5-di-tert-butylbenzoate and pentafluorobenzoate anions in compound III results in the formation of a compound with integral populations of the positions of the anions. The synthesized compounds are characterized by XRD, IR spectroscopy, and C, H, N elemental analysis.

Full Text

Restricted Access

About the authors

M. A. Shmelev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: shmelevma@yandex.ru
Russian Federation, Moscow

T. D. Shatrov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Moscow State University

Email: shmelevma@yandex.ru
Russian Federation, Moscow; Moscow

O. V. Zvereva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; National Research University Higher School of Economics

Email: shmelevma@yandex.ru
Russian Federation, Moscow; Moscow

A. A. Levina

Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences

Email: shmelevma@yandex.ru
Russian Federation, Moscow

J. K. Voronina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: shmelevma@yandex.ru
Russian Federation, Moscow

A. A. Sidorov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: shmelevma@yandex.ru
Russian Federation, Moscow

I. L. Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: shmelevma@yandex.ru
Russian Federation, Moscow

References

  1. Han L.-J., Kong Y.-J., Sheng N., Jiang X.-L. // J. Fluor. Chem. 2014. V. 166. P. 122.
  2. Bünzli J.-C.G. // Chem. Rev. 2010. V. 110. № 5. P. 2729.
  3. Kotova O., Comby S., Lincheneau C., Gunnlaugsson T. // Chem. Sci. 2017. V. 8. P. 3419.
  4. Maouche R., Belaid S., Benmerad B. et al. // Inorg. Chim. Acta. 2020. V. 501. P. 119309.
  5. Belousov Y., Drozdov A.A., Taydakov I.V. et al. // Coord. Chem. Rev. 2021. V. 445. P. 214084.
  6. Bovkunova A.A., Bazhina E.S., Evstifeev I.S. et al. // Dalton Trans. 2021. V. 50. P. 12275.
  7. Bernot K., Daiguebonne C., Calvez G. et al. // Acc. Chem. Res. 2021. V. 54. № 2. P. 427.
  8. Costa I.F., Blois L., Paolini T.B. et al. // Coord. Chem. Rev. 2024. V. 502. P. 215590.
  9. Wang H., Li H., Yang L. et al. // Mol. Cryst. Liq. 2022. V. 736. P. 113.
  10. Silva A. I. S., Lima N.B.D., Simas A.M., Gonçalves S.M. C. // ACS Omega. 2017. V. 2(10). P. 6786.
  11. Brito-Santos G., Hernández-Rodríguez C., Gil-Hernández B. et al. // Dalton Trans. 2022. V. 51. P. 3146.
  12. Silva A.I.S., Santos V.F.C., Lima N.B.D. et al. // RSC Adv. 2016. V. 6. P. 90934.
  13. Melo L.L.L.S., Castro Jr. G.P., Gonçalves S.M. C. // Inorg. Chem. 2019. V. 58(5). P. 3265.
  14. Shmelev M.A., Polunin R.A., Gogoleva N.V. et al. // Molecules. 2021. V. 26. № 14. P. 4296.
  15. Шмелев М.А., Воронина Ю.К., Гоголева Н.В. и др. // Коорд. химия. 2022. Т. 48 № 4. С. 229 (Shmelev M.A., Voronina Yu. K., Gogoleva N.V. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 4. P. 224). https://doi.org/10.1134/S1070328422040042.
  16. Melnikov S.N., Evstifeev I.S., Nikolaveskii S.A. et al. // New J. Chem. 2021. V. 45. P. 13349.
  17. Shmelev M.A., Voronina J.K., Evtyukhin M.A. et al. // Inorganics. 2022. V. 10. № 11. P. 194.
  18. Voronina J.K., Yambulatov D.S., Chistyakov A.S. et al. // Crystals. 2023. V. 13. № 4. P. 678.
  19. Шмелев М.А., Чистяков А.С., Разгоняева Г.А. и др. // Журн. структур. химии. 2024. Т. 65. № 2. С. 122814 (Shmelev M.A., Chistyakov A.S., Razgonyaeva G.A. et al. // J. Struct. Chem. 2024. V. 65. P. 362).
  20. Kashyap C., Ullah S.S., Mazumder L.J., Kanti Guha A. // Comput. Theor. Chem. 2018. V. 1130. P. 134.
  21. Belousov Y., Kiskin M.A., Sidoruk A.V. et al. // Aust. J. Chem. 2022. V. 75. № 9. P. 572.
  22. Schwabedissen J., Trapp P.C., Stammler H.-G. et al. // Chem. Eur. J. 2019. V. 25. № 30. P. 7339.
  23. Varadwaj P.R., Varadwaj A., Marques H.M., Yamashita K. // Computation 2018. V. 6(4). P. 51.
  24. Coates G.W., Dunn A.R., Henling L. . // J. Am. Chem. Soc. 1998. V. 120. № 15. P. 3641.
  25. Brend’amour S., Gilmer J., Bolte M. et al. // Chem. — Eur. J. 2018. V. 24. № 63. P. 16910.
  26. Biradha K., Santra R. // Chem. Soc. Rev. 2013. V. 42. P. 950.
  27. Jassal A.K., Sran B.S., Suffren Y. et al. // Dalton Trans. 2018. V. 47. P. 4722.
  28. De Bettencourt-Dias A., Viswanathan S. // Dalton Trans. 2006. P. 4093.
  29. Tsaryuka V., Kudryashova V., Gawryszewska P. et al. // Photochem. Photobiol. 2012. V. 239. P. 37.
  30. Roy S., Bauza A., Frontera A. et al. // Inorg. Chim. Acta. 2016. V. 440. P. 38.
  31. Шмелев М.А., Гоголева Н.В., Иванов В.К. и др. // Коорд. химия. 2022. Т. 48(9). С. 515 (Shmelev M.A., Gogoleva N.V., Ivanov V.K. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 9. P. 539).
  32. Shmelev M.A., Gogoleva N.V., Sidorov A.A. et al. // ChemistrySelect. 2020. V. 5. № 28. P. 8475.
  33. Ларионов С.В., Кириченко В.Н., Расторгуев А.А. и др. // Коорд. химия. 1997. Т. 23. № 6. С. 432 (Larionov S.V., Kirichenko V.N., Rastorguev A.A. et al. // Russ. J. Coord. Chem. 1997. V. 23(6). P. 465).
  34. Jassal A.K., Sharma S., Hundal G., Hundal M.S. // Cryst. Growth Des. 2015. V. 15. № 1, P. 79.
  35. Moreno-Gómez L., Sánchez-Férez F., Calvet T. et al. // Inorg. Chim. Acta. 2020. V. 506. P. 119561.
  36. SMART (control) and SAINT (integration). Software. Version 5.0. Madison (WI, USA): Bruker AXS Inc., 1997.
  37. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  38. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
  39. Casanova D., Llunell M., Alemany P., Alvarez S. et al. // Chem. Eur. J. 2005. V. 11. P. 1479.
  40. Shmelev M.A., Chistyakov A.S., Razgonyaeva G.A. et al. // Crystals. 2022. V. 12. № 4. P. 508.
  41. Shmelev M.A., Kuznetsova G.N., Gogoleva N.V. et al. // Russ. Chem. Bull. 2021. V. 70. P. 830 (Шмелев М А., Кузнецова Г.Н., Гоголева Н.В. и др. // Изв. АН. Сер. хим. 2021. Т. 70. С. 830). https://doi.org/10.1007/s11172-021-3156-9
  42. Seera R., Cherukuvada S., Guru Row T.N. // Cryst. Growth Des. 2021. V. 21. № 8. P. 4607.
  43. Reddy L.S., Bhatt P.M., Banerjee R. et al. // Chem. Asian J. 2007. V. 2. P. 505.
  44. Jetti R.K.–R., Boese R., Thallapally P.K., Desiraju G.R. // Cryst.Growth Des. 2003. V. 3. P. 1033.
  45. Sharada D., Saha A., Saha B.K. // New J. Chem. 2019. V. 43. P. 7562.
  46. Lynch D.E., Smith G., Byriel K.A., Kennard C.H.L. // Aust. J. Chem. 1994. V. 47. P. 1789.
  47. Jin S., Wang D. // J. Mol. Struct. 2013. V. 1037. P. 242.
  48. Jones C.L., Skelton J.M., Parker S.C. et al. // CrystEngComm. 2019. V. 21. P. 1626.
  49. Arora K.K., Pedireddi V.R. // Tetrahedron. 2004. V. 60. P. 919.
  50. Shmelev M.A., Kiskin M.A, Voronina J.K. et al. // Materials. 2020. V. 13. № 24, № 5689.
  51. Shmelev M. A., Gogoleva N.V., Sidorov A.A. et al. // Inorg. Chim. Acta. 2021. V. 515. P. 120050.
  52. Sidorov A.A., Gogoleva N.V., Bazhina E.S. et al. // Pure Appl. Chem. 2020. V. 92. № 7. P. 1093.
  53. Shmelev M.A., Voronina Yu.K., Gogoleva N.V. et al. // Russ. Chem. Bull. 2020. V. 69. P. 1544 (Шмелев М.А., Воронина Ю.К., Гоголева Н.В. и др. // Изв. АН. Сер. хим. 2020. Т. 69, С. 1544).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Sch. 1. Synthesis of compounds I-III.

Download (354KB)
3. Fig. 1. Structure of complex I. Hydrogen atoms and solvated molecules are not shown.

Download (510KB)
4. Fig. 2. Structure of complex II. Hydrogen atoms are not shown.

Download (514KB)
5. Fig. 3. Structure of complex III. Tret-butyl substituents and hydrogen atoms are not shown.

Download (270KB)

Copyright (c) 2024 Российская академия наук