Mixed-carboxylate cadmium–europium compounds with monocarboxylic acid anions
- Autores: Shmelev M.A.1, Shatrov T.D.1,2, Zvereva O.V.1,3, Levina A.A.4, Voronina J.K.1, Sidorov A.A.1, Eremenko I.L.1
- 
							Afiliações: 
							- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Moscow State University
- National Research University Higher School of Economics
- Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences
 
- Edição: Volume 50, Nº 12 (2024)
- Páginas: 833–843
- Seção: Articles
- URL: https://cardiosomatics.ru/0132-344X/article/view/676744
- DOI: https://doi.org/10.31857/S0132344X24120032
- EDN: https://elibrary.ru/LMEQGM
- ID: 676744
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
A series of mixed-carboxylate EuCd compounds with 1,10-phenanthroline (phen) and anions of benzoic H(Bz), pentabenzoic H(Pfb), 3,5-dinitrobenzoic H(3,5-Nbz), and 3,5-di-tert-butylbenzoic H(Dtbbz) acids is synthesized: [Eu2Cd2(Phen)2(Рfb)5,4(Bz)4,6].2MeCN (I), [Eu2(H2O)2Cd2(Phen)2(3,5-Nbz)4,1(Bz)5,9] (II) and [EuCd2(EtOH)4(Dtbbz)6(Pfb)] (III). The variation of combinations of aromatic anions makes it possible to reveal the influence of diverse factors on the compositions and structures of new compounds. In the case of benzoate‒pentafluorobenzoate compound I and 3,5-dinitrobenzoate‒benzoate compound II, the aromatic substituents of the anions have nonintegral populations and occupy close positions in the structure of the complex. The combination of the more bulky 3,5-di-tert-butylbenzoate and pentafluorobenzoate anions in compound III results in the formation of a compound with integral populations of the positions of the anions. The synthesized compounds are characterized by XRD, IR spectroscopy, and C, H, N elemental analysis.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
M. Shmelev
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: shmelevma@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
T. Shatrov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Moscow State University
														Email: shmelevma@yandex.ru
				                					                																			                												                	Rússia, 							Moscow; Moscow						
O. Zvereva
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; National Research University Higher School of Economics
														Email: shmelevma@yandex.ru
				                					                																			                												                	Rússia, 							Moscow; Moscow						
A. Levina
Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences
														Email: shmelevma@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
J. Voronina
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: shmelevma@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
A. Sidorov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: shmelevma@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
I. Eremenko
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: shmelevma@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Han L.-J., Kong Y.-J., Sheng N., Jiang X.-L. // J. Fluor. Chem. 2014. V. 166. P. 122.
- Bünzli J.-C.G. // Chem. Rev. 2010. V. 110. № 5. P. 2729.
- Kotova O., Comby S., Lincheneau C., Gunnlaugsson T. // Chem. Sci. 2017. V. 8. P. 3419.
- Maouche R., Belaid S., Benmerad B. et al. // Inorg. Chim. Acta. 2020. V. 501. P. 119309.
- Belousov Y., Drozdov A.A., Taydakov I.V. et al. // Coord. Chem. Rev. 2021. V. 445. P. 214084.
- Bovkunova A.A., Bazhina E.S., Evstifeev I.S. et al. // Dalton Trans. 2021. V. 50. P. 12275.
- Bernot K., Daiguebonne C., Calvez G. et al. // Acc. Chem. Res. 2021. V. 54. № 2. P. 427.
- Costa I.F., Blois L., Paolini T.B. et al. // Coord. Chem. Rev. 2024. V. 502. P. 215590.
- Wang H., Li H., Yang L. et al. // Mol. Cryst. Liq. 2022. V. 736. P. 113.
- Silva A. I. S., Lima N.B.D., Simas A.M., Gonçalves S.M. C. // ACS Omega. 2017. V. 2(10). P. 6786.
- Brito-Santos G., Hernández-Rodríguez C., Gil-Hernández B. et al. // Dalton Trans. 2022. V. 51. P. 3146.
- Silva A.I.S., Santos V.F.C., Lima N.B.D. et al. // RSC Adv. 2016. V. 6. P. 90934.
- Melo L.L.L.S., Castro Jr. G.P., Gonçalves S.M. C. // Inorg. Chem. 2019. V. 58(5). P. 3265.
- Shmelev M.A., Polunin R.A., Gogoleva N.V. et al. // Molecules. 2021. V. 26. № 14. P. 4296.
- Шмелев М.А., Воронина Ю.К., Гоголева Н.В. и др. // Коорд. химия. 2022. Т. 48 № 4. С. 229 (Shmelev M.A., Voronina Yu. K., Gogoleva N.V. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 4. P. 224). https://doi.org/10.1134/S1070328422040042.
- Melnikov S.N., Evstifeev I.S., Nikolaveskii S.A. et al. // New J. Chem. 2021. V. 45. P. 13349.
- Shmelev M.A., Voronina J.K., Evtyukhin M.A. et al. // Inorganics. 2022. V. 10. № 11. P. 194.
- Voronina J.K., Yambulatov D.S., Chistyakov A.S. et al. // Crystals. 2023. V. 13. № 4. P. 678.
- Шмелев М.А., Чистяков А.С., Разгоняева Г.А. и др. // Журн. структур. химии. 2024. Т. 65. № 2. С. 122814 (Shmelev M.A., Chistyakov A.S., Razgonyaeva G.A. et al. // J. Struct. Chem. 2024. V. 65. P. 362).
- Kashyap C., Ullah S.S., Mazumder L.J., Kanti Guha A. // Comput. Theor. Chem. 2018. V. 1130. P. 134.
- Belousov Y., Kiskin M.A., Sidoruk A.V. et al. // Aust. J. Chem. 2022. V. 75. № 9. P. 572.
- Schwabedissen J., Trapp P.C., Stammler H.-G. et al. // Chem. Eur. J. 2019. V. 25. № 30. P. 7339.
- Varadwaj P.R., Varadwaj A., Marques H.M., Yamashita K. // Computation 2018. V. 6(4). P. 51.
- Coates G.W., Dunn A.R., Henling L. . // J. Am. Chem. Soc. 1998. V. 120. № 15. P. 3641.
- Brend’amour S., Gilmer J., Bolte M. et al. // Chem. — Eur. J. 2018. V. 24. № 63. P. 16910.
- Biradha K., Santra R. // Chem. Soc. Rev. 2013. V. 42. P. 950.
- Jassal A.K., Sran B.S., Suffren Y. et al. // Dalton Trans. 2018. V. 47. P. 4722.
- De Bettencourt-Dias A., Viswanathan S. // Dalton Trans. 2006. P. 4093.
- Tsaryuka V., Kudryashova V., Gawryszewska P. et al. // Photochem. Photobiol. 2012. V. 239. P. 37.
- Roy S., Bauza A., Frontera A. et al. // Inorg. Chim. Acta. 2016. V. 440. P. 38.
- Шмелев М.А., Гоголева Н.В., Иванов В.К. и др. // Коорд. химия. 2022. Т. 48(9). С. 515 (Shmelev M.A., Gogoleva N.V., Ivanov V.K. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 9. P. 539).
- Shmelev M.A., Gogoleva N.V., Sidorov A.A. et al. // ChemistrySelect. 2020. V. 5. № 28. P. 8475.
- Ларионов С.В., Кириченко В.Н., Расторгуев А.А. и др. // Коорд. химия. 1997. Т. 23. № 6. С. 432 (Larionov S.V., Kirichenko V.N., Rastorguev A.A. et al. // Russ. J. Coord. Chem. 1997. V. 23(6). P. 465).
- Jassal A.K., Sharma S., Hundal G., Hundal M.S. // Cryst. Growth Des. 2015. V. 15. № 1, P. 79.
- Moreno-Gómez L., Sánchez-Férez F., Calvet T. et al. // Inorg. Chim. Acta. 2020. V. 506. P. 119561.
- SMART (control) and SAINT (integration). Software. Version 5.0. Madison (WI, USA): Bruker AXS Inc., 1997.
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
- Casanova D., Llunell M., Alemany P., Alvarez S. et al. // Chem. Eur. J. 2005. V. 11. P. 1479.
- Shmelev M.A., Chistyakov A.S., Razgonyaeva G.A. et al. // Crystals. 2022. V. 12. № 4. P. 508.
- Shmelev M.A., Kuznetsova G.N., Gogoleva N.V. et al. // Russ. Chem. Bull. 2021. V. 70. P. 830 (Шмелев М А., Кузнецова Г.Н., Гоголева Н.В. и др. // Изв. АН. Сер. хим. 2021. Т. 70. С. 830). https://doi.org/10.1007/s11172-021-3156-9
- Seera R., Cherukuvada S., Guru Row T.N. // Cryst. Growth Des. 2021. V. 21. № 8. P. 4607.
- Reddy L.S., Bhatt P.M., Banerjee R. et al. // Chem. Asian J. 2007. V. 2. P. 505.
- Jetti R.K.–R., Boese R., Thallapally P.K., Desiraju G.R. // Cryst.Growth Des. 2003. V. 3. P. 1033.
- Sharada D., Saha A., Saha B.K. // New J. Chem. 2019. V. 43. P. 7562.
- Lynch D.E., Smith G., Byriel K.A., Kennard C.H.L. // Aust. J. Chem. 1994. V. 47. P. 1789.
- Jin S., Wang D. // J. Mol. Struct. 2013. V. 1037. P. 242.
- Jones C.L., Skelton J.M., Parker S.C. et al. // CrystEngComm. 2019. V. 21. P. 1626.
- Arora K.K., Pedireddi V.R. // Tetrahedron. 2004. V. 60. P. 919.
- Shmelev M.A., Kiskin M.A, Voronina J.K. et al. // Materials. 2020. V. 13. № 24, № 5689.
- Shmelev M. A., Gogoleva N.V., Sidorov A.A. et al. // Inorg. Chim. Acta. 2021. V. 515. P. 120050.
- Sidorov A.A., Gogoleva N.V., Bazhina E.S. et al. // Pure Appl. Chem. 2020. V. 92. № 7. P. 1093.
- Shmelev M.A., Voronina Yu.K., Gogoleva N.V. et al. // Russ. Chem. Bull. 2020. V. 69. P. 1544 (Шмелев М.А., Воронина Ю.К., Гоголева Н.В. и др. // Изв. АН. Сер. хим. 2020. Т. 69, С. 1544).
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




