Effect of Substituents in the Pentafluorobenzoate and 2,3,4,5- and 2,3,5,6-Tetrafluorobenzoate Anions on the Structure of Cadmium Complexes
- Authors: Shmelev M.A.1, Razgonyaeva G.A.1, Yambulatov D.S.1, Starikov A.G.2, Sidorov A.A.1, Eremenko I.L.1
- 
							Affiliations: 
							- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Research Institute of Physical and Organic Chemistry, Southern Federal University
 
- Issue: Vol 50, No 4 (2024)
- Pages: 231-250
- Section: Articles
- URL: https://cardiosomatics.ru/0132-344X/article/view/667604
- DOI: https://doi.org/10.31857/S0132344X24040022
- EDN: https://elibrary.ru/NQCTRL
- ID: 667604
Cite item
Abstract
New cadmium 2,3,4,5-tetrafluorobenzoate (6HTfb) and 2,3,5,6-tetrafluorobenzoate (4Htfb) complexes, [Cd(6HTfb)(H2O)3]n·(6HTfb)·2nH2O (I), [Cd3(Phen)2(6HTfb)6] (II, Phen = 1,10-phenanthroline), [Cd2(Phen)2(4Htfb)4]n·2nH2O (III), and [Cd(Phen)2(4Htfb)2] (IV), were synthesized. Analysis of the obtained results and published data demonstrated that a decrease in the number of fluorine substituents is unfavorable for the formation of coordination polymers comprising stacked alternating fluorinated and nonfluorinated aromatic moieties. In the case of 2,4,5-trifluorobenzoate complex, a typical trivial structure of the binuclear cadmium complex with ligand-shielded metal core is formed. The synthesis of 2,3,4,5- and 2,3,5,6-tetrafluorobenzoate complexes produced an intermediate situation and demonstrated that the structure of complex formation products is affected by not only the number, but also the positions of fluorine substituents. Using quantum chemical calculations, it was shown that the formation of coordination polymers requires a molecular precursor with a Chinese lantern structure stable in solutions, while the formation of unusual flattened binuclear complexes with additionally coordinated water molecules requires doubly bridged binuclear complexes able to switch to a conformation with exposed coordinatively unsaturated metal centers.
Full Text
 
												
	                        About the authors
M. A. Shmelev
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: sidorov@igic.ras.ru
				                					                																			                												                	Russian Federation, 							Moscow						
G. A. Razgonyaeva
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: sidorov@igic.ras.ru
				                					                																			                												                	Russian Federation, 							Moscow						
D. S. Yambulatov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: sidorov@igic.ras.ru
				                					                																			                												                	Russian Federation, 							Moscow						
A. G. Starikov
Research Institute of Physical and Organic Chemistry, Southern Federal University
														Email: sidorov@igic.ras.ru
				                					                																			                												                	Russian Federation, 							Rostov-on-Don						
A. A. Sidorov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
							Author for correspondence.
							Email: sidorov@igic.ras.ru
				                					                																			                												                	Russian Federation, 							Moscow						
I. L. Eremenko
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: sidorov@igic.ras.ru
				                					                																			                												                	Russian Federation, 							Moscow						
References
- Saxena, P. and Thirupathi, N., Polyhedron, 2015, vol. 98, no. 1, p. 238.
- Pryma, O.V., Petrusenko, S.R., Kokozay, V.N., et al., Inorg. Chem. Commun., 2003, vol. 6, no. 7, p. 896.
- Zhao, Q.-H., Ma, Y.-P., Wang, Q.-H., and Fang, R.-B., Chin. J. Struct. Chem., 2002, vol. 21, p. 513.
- Shmelev, M.A., Kuznetsova, G.N., Gogoleva, N.V., et al., Russ. Chem. Bull., 2021, vol. 70, no. 5, p. 830.
- Shmelev, M.A., Chistyakov, A.S., Razgonyaeva, G.A., et al., Crystals, 2022, vol. 12, p. 508.
- Yang, Y.-Q., Li, C.-H., Li, W., and Kuang, Y.-F., Chin. J. Inorg. Chem., 2009, vol. 25, p. 1120.
- Nie, J.-J., Pan, T.-T., Su, J.-R., and Xu, D.-J., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2010, vol. 66, p. m760.
- Gogoleva, N.V., Shmelev, M.A., Evstifeev, I.S., et al., Russ. Chem. Bull., 2016, vol. 65, p. 181.
- Li, W., Li, C.-H., Yang, Y.-Q., and Li, Y.-L., Chin. J. Inorg. Chem., 2010, vol. 26, p. 166.
- Kuznetsova, G.N., Yambulatov, D.S., Kiskin, M.A., et al., Russ. J. Coord. Chem., 2020, vol. 46, p. 553. https://doi.org/10.1134/S1070328420080047
- Itoh, T., Kondo, M., Kanaike, M., and Masaoka, S., CrystEngComm, 2013, vol. 15, p. 6122.
- Cockcroft, J.K., Rosu-Finsen, A., Fitch, A.N., and Williams, J.H., CrystEngComm, 2018, vol. 20, p. 6677.
- Lee, G.Y., Hu, E., Rheingold, A.L., Houk, K.N., and Sletten, E.M., Org. Chem., 2021, vol. 86, p. 8425.
- Shmelev, M.A., Kuznetsova, G.N., Dolgushin, F.M., et al, Russ. J. Coord. Chem., 2021, vol. 47, p. 127. https://doi.org/10.1134/S1070328421020068
- Shmelev, M.A., Voronina, J.K., Evtyukhin, M.A., et al., Inorganics, 2022, vol. 10, p. 194.
- Shmelev, M.A., Kiskin, M.A., Voronina, J.K., et al., Materials, 2020, vol. 13, no. 24, p. 5689.
- Voronina, J.K., Yambulatov, D.S., Chistyakov, A.S., et al., Crystals, 2023, vol. 13, p. 678.
- Li, J.-X. and Du, Z.-X., J. Cluster Sci., 2020, vol. 31, p. 507.
- Wu, W.P., Wang, J., Lu, L., Xie, B., Wu, Y., and Kumar, A., Russ. J. Coord. Chem., 2016, vol. 42, p. 71.
- Corradi, A.B., Menabue, L., Saladini, M., Sola, M., and Battaglia, L.P., Dalton Trans., 1992, p. 2623.
- Nikolaevskii, S.A., Evstifeev, I.S., and Kiskin, M.A., et al., Polyhedron, 2018, vol. 152, p. 61.
- Shmelev, M.A., Gogoleva, N.V., Dolgushin, F.M., et al., Russ. J. Coord. Chem., 2020, vol. 46, no. 7, p. 493. https://doi.org/10.1134/S1070328420070076
- Yang, Y.-Q., Li, C.-H., Li, W., and Kuang, Y.-F., Chin. J. Inorg. Chem., 2010, vol. 26, p. 1890.
- Zha, M.-Q., Li, X., and Bing, Y., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2010, vol. 67, p. m8.
- SMART (control) and SAINT (integration). Software. Version 5.0, Madison: Bruker AXS Inc., 1997.
- Sheldrick, G.M., SADABS, Madison: Bruker AXS Inc., 1997.
- Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.
- Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Crystallogr., 2009, vol. 42, p. 339.
- Casanova, D., Llunell, M., Alemany, P., and Alvarez, S., Chem.-Eur. J., 2005, vol. 11, p. 1479.
- Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian 16. Revision A. 03, Wallingford: Gaussian, 2016.
- Kohn, W. and Sham, L.J., Phys. Rev. A, 1965, vol. 140, p. 1133.
- Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.
- Nikolaevskii, S.A., Kiskin, M.A., Starikova, A.A., et al., Russ. Chem. Bull., 2016, vol. 65, p. 2812.
- Nikolaevskii, S.A., Kiskin, M.A., Starikov, A.G., et al., Russ. J. Coord. Chem., 2019, vol. 45, no. 4, p. 273. https://doi.org/10.1134/S1070328419040067
- Gogoleva, N.V., Shmelev, M.A., Kiskin, M.A., et al., Russ. J. Coord. Chem., 2021, vol. 47, no. 4, p. 261. https://doi.org/10.1134/S1070328421040035
- Grimme, S., Ehrlich, S., and Goerigk, L.L., J. Comput. Chem., 2011, vol. 32, p. 1456.
- Yanai, T., Tew, D., and Handy, N., Chem. Phys. Lett., 2004, vol. 393, p. 51.
- Chemcraft–Graphical Software for Visualization of Quantum Chemistry Computations. Version 1.8. Build 682, https://www.chemcraftprog.com.
- Ge, C.-H., Zhang, R., Fan, P., Zhang, X.-D., et al., Chin. Chem. Lett., 2013, vol. 24, p. 73.
- Lou, Q.-Z., Z. Kristallogr.-New Cryst. Struct., 2007, vol. 222, p. 105.
- Shmelev, M.A., Gogoleva, N.V., Kuznetsova, G.N., et al., Russ. J. Coord. Chem., 2020, vol. 46, no. 8, p. 557. https://doi.org/10.31857/S0132344X2008006X
- Dankhar, S.S. and Nagaraja, C.M., J. Solid State Chem., 2020, vol. 290, p. 121560.
- Wang, X.L., Zhang, J.X., Liu, G.C., et al., Russ. J. Coord. Chem., 2010, vol. 36, p. 662.
- Bu, X.-H., Tong, M.-L., Li, J.-R., et al., Cryst. Eng. Comm., 2005, vol. 7, p. 411.
- Clegg, W., Little, I.R., and Straughan, B.P., Inorg. Chem., 1988, vol. 27, p. 1916.
- Clegg, W., Harbron, D.R., and Straughan, B.P., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1991, vol. 47, p. 267.
- Escobedo-Martinez, C., Lozada, M.C., and Gnecco, D., J. Chem. Cryst., 2012, vol. 42, p. 794.
- Pramanik, A., Fronczek, F.R., Venkatraman, R., and Hossain, M.A., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2013, vol. 69, p. m643.
- Necefoglu, H., Clegg, W., and Scott, A.J., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2002, vol. 58, p. m123.
- Jin, Z.-N. and Zhang, B.-S., Z.Kristallogr.-New Cryst. Struct., 2018, vol. 233, p. 179.
- Carballo, R., Covelo, B., Fernandez-Hermida, N., et al., J. Chem. Cryst., 2011, vol. 41, p. 1949.
- Tunsrichon, S., Sukpattanacharoen, C., Escudero, D., et al., Inorg. Chem., 2020, vol. 59, p. 6176.
- Carballo, R., Covelo, B., Garcia-Martinez, E., et al., Appl. Organomet. Chem., 2004, vol. 18, p. 201.
- Sen, S., Saha, M.K., Kundu, P., et al., Inorg. Chim. Acta, 1999, vol. 288, p. 118.
- Roy, S., Bauza, A., Frontera, A., et al., CrystEngComm, 2015, vol. 17, p. 3912.
- Bai, H., Gao, H., and Hu, M., Adv. Mater. Res., 2014, vol. 997, p. 140.
- Li, W., Li, C.-H., Yang, Y.-Q., and Li, D.-P., Chin. J. Inorg. Chem., 2008, vol. 24, p. 2060.
- Li, W., Li, C.-H., Yang, Y.-Q., et al., Chin. J. Inorg. Chem., 2007, vol. 23, p. 2013.
- Li, W.-W., Bing, Y., Zha, M.-Q., et al., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2011, vol. 67, p. m1464.
- Bing, Y., Li, X., Zha, M.-Q., and Wang, D.-J., Nano-Met. Chem., 2011, vol. 41, p. 798.
- Zha, M.-Q., Li, X., and Bing, Y., J. Coord. Chem., 2011, vol. 64, p. 473.
- Pruchnik, F.P., Dawid, U., and Kochel, A., Polyhedron, 2006, vol. 25, p. 3647.
- Liu, C.-S., Sanudo, E.C., Yan, L.-F., et al., Transition Met. Chem., 2009, vol. 34, p. 51.
- Song, W.-D., Yan, J.-B., and Hao, X.-M., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2008, vol. 64, p. m919.
- Liu, G.-C., Qu, Y., Wang, X.-L., Zhang, J.-W., et al., Z. Anorg. Allg. Chem., 2014, vol. 640, p. 1696.
- Feng, S., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2008, vol. 64, p. m817.
- Uvarova, M.A., Kushan, E.V., Andreev, M.V., et al., Russ. J. Inorg. Chem., 2012, vol. 57, p. 1314.
- Gomez, V. and Corbella, M., Eur. J. Inorg. Chem., 2009, p. 4471.
- Kruszynski, R., Malinowska, A., Czakis-Sulikowska, D., and Lamparska, A., J. Coord. Chem., 2009, vol. 62, p. 911.
- Shao, C.-Y., Song, S., Song, M., et al., Chin. Chem. Res., 2011, vol. 22, p. 29.
- Deng, Z.-P., Gao, S., Huo, L.-H., and Zhao, H., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2007, vol. 63, p. m2694.
- Li Zuo, Li Zuohong, Yang Yingqun, Chen Zhimin, and Wang Ying, Chin. J. Inorg. Chem., 2008, vol. 24, p. 1360.
- Yang, Y.-Q., Li, C.-H., Li, W., et al., Chin. J. Struct. Chem., 2006, vol. 25, p. 1409.
- Tabrizi, L., McArdle, P., Ektefan, M., and Chiniforoshan, H., Inorg. Chim. Acta, 2016, vol. 439, p. 138.
- Ge, C., Zhang, X., Yin, J., and Zhang, R., Chin. J. Chem., 2010, vol. 28, p. 2083.
- Torres, J.F., Bello-Vieda, N.J., Macias, M.A., et al., Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 2020, vol. 76, p. 166.
- Baur, A., Bustin, K.A., Aguilera, E., et al., Org. Chem. Front., 2017, vol. 4, p. 519.
- Gogoleva, N.V., Shmelev, M.A., Kiskin, M.A., et al., Russ. Chem. Bull., 2016, vol. 65, p. 1198.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted







