Effect of Substituents in the Pentafluorobenzoate and 2,3,4,5- and 2,3,5,6-Tetrafluorobenzoate Anions on the Structure of Cadmium Complexes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

New cadmium 2,3,4,5-tetrafluorobenzoate (6HTfb) and 2,3,5,6-tetrafluorobenzoate (4Htfb) complexes, [Cd(6HTfb)(H2O)3]n·(6HTfb)·2nH2O (I), [Cd3(Phen)2(6HTfb)6] (II, Phen = 1,10-phenanthroline), [Cd2(Phen)2(4Htfb)4]n·2nH2O (III), and [Cd(Phen)2(4Htfb)2] (IV), were synthesized. Analysis of the obtained results and published data demonstrated that a decrease in the number of fluorine substituents is unfavorable for the formation of coordination polymers comprising stacked alternating fluorinated and nonfluorinated aromatic moieties. In the case of 2,4,5-trifluorobenzoate complex, a typical trivial structure of the binuclear cadmium complex with ligand-shielded metal core is formed. The synthesis of 2,3,4,5- and 2,3,5,6-tetrafluorobenzoate complexes produced an intermediate situation and demonstrated that the structure of complex formation products is affected by not only the number, but also the positions of fluorine substituents. Using quantum chemical calculations, it was shown that the formation of coordination polymers requires a molecular precursor with a Chinese lantern structure stable in solutions, while the formation of unusual flattened binuclear complexes with additionally coordinated water molecules requires doubly bridged binuclear complexes able to switch to a conformation with exposed coordinatively unsaturated metal centers.

Texto integral

Acesso é fechado

Sobre autores

M. Shmelev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sidorov@igic.ras.ru
Rússia, Moscow

G. Razgonyaeva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sidorov@igic.ras.ru
Rússia, Moscow

D. Yambulatov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sidorov@igic.ras.ru
Rússia, Moscow

A. Starikov

Research Institute of Physical and Organic Chemistry, Southern Federal University

Email: sidorov@igic.ras.ru
Rússia, Rostov-on-Don

A. Sidorov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: sidorov@igic.ras.ru
Rússia, Moscow

I. Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sidorov@igic.ras.ru
Rússia, Moscow

Bibliografia

  1. Saxena, P. and Thirupathi, N., Polyhedron, 2015, vol. 98, no. 1, p. 238.
  2. Pryma, O.V., Petrusenko, S.R., Kokozay, V.N., et al., Inorg. Chem. Commun., 2003, vol. 6, no. 7, p. 896.
  3. Zhao, Q.-H., Ma, Y.-P., Wang, Q.-H., and Fang, R.-B., Chin. J. Struct. Chem., 2002, vol. 21, p. 513.
  4. Shmelev, M.A., Kuznetsova, G.N., Gogoleva, N.V., et al., Russ. Chem. Bull., 2021, vol. 70, no. 5, p. 830.
  5. Shmelev, M.A., Chistyakov, A.S., Razgonyaeva, G.A., et al., Crystals, 2022, vol. 12, p. 508.
  6. Yang, Y.-Q., Li, C.-H., Li, W., and Kuang, Y.-F., Chin. J. Inorg. Chem., 2009, vol. 25, p. 1120.
  7. Nie, J.-J., Pan, T.-T., Su, J.-R., and Xu, D.-J., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2010, vol. 66, p. m760.
  8. Gogoleva, N.V., Shmelev, M.A., Evstifeev, I.S., et al., Russ. Chem. Bull., 2016, vol. 65, p. 181.
  9. Li, W., Li, C.-H., Yang, Y.-Q., and Li, Y.-L., Chin. J. Inorg. Chem., 2010, vol. 26, p. 166.
  10. Kuznetsova, G.N., Yambulatov, D.S., Kiskin, M.A., et al., Russ. J. Coord. Chem., 2020, vol. 46, p. 553. https://doi.org/10.1134/S1070328420080047
  11. Itoh, T., Kondo, M., Kanaike, M., and Masaoka, S., CrystEngComm, 2013, vol. 15, p. 6122.
  12. Cockcroft, J.K., Rosu-Finsen, A., Fitch, A.N., and Williams, J.H., CrystEngComm, 2018, vol. 20, p. 6677.
  13. Lee, G.Y., Hu, E., Rheingold, A.L., Houk, K.N., and Sletten, E.M., Org. Chem., 2021, vol. 86, p. 8425.
  14. Shmelev, M.A., Kuznetsova, G.N., Dolgushin, F.M., et al, Russ. J. Coord. Chem., 2021, vol. 47, p. 127. https://doi.org/10.1134/S1070328421020068
  15. Shmelev, M.A., Voronina, J.K., Evtyukhin, M.A., et al., Inorganics, 2022, vol. 10, p. 194.
  16. Shmelev, M.A., Kiskin, M.A., Voronina, J.K., et al., Materials, 2020, vol. 13, no. 24, p. 5689.
  17. Voronina, J.K., Yambulatov, D.S., Chistyakov, A.S., et al., Crystals, 2023, vol. 13, p. 678.
  18. Li, J.-X. and Du, Z.-X., J. Cluster Sci., 2020, vol. 31, p. 507.
  19. Wu, W.P., Wang, J., Lu, L., Xie, B., Wu, Y., and Kumar, A., Russ. J. Coord. Chem., 2016, vol. 42, p. 71.
  20. Corradi, A.B., Menabue, L., Saladini, M., Sola, M., and Battaglia, L.P., Dalton Trans., 1992, p. 2623.
  21. Nikolaevskii, S.A., Evstifeev, I.S., and Kiskin, M.A., et al., Polyhedron, 2018, vol. 152, p. 61.
  22. Shmelev, M.A., Gogoleva, N.V., Dolgushin, F.M., et al., Russ. J. Coord. Chem., 2020, vol. 46, no. 7, p. 493. https://doi.org/10.1134/S1070328420070076
  23. Yang, Y.-Q., Li, C.-H., Li, W., and Kuang, Y.-F., Chin. J. Inorg. Chem., 2010, vol. 26, p. 1890.
  24. Zha, M.-Q., Li, X., and Bing, Y., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2010, vol. 67, p. m8.
  25. SMART (control) and SAINT (integration). Software. Version 5.0, Madison: Bruker AXS Inc., 1997.
  26. Sheldrick, G.M., SADABS, Madison: Bruker AXS Inc., 1997.
  27. Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.
  28. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Crystallogr., 2009, vol. 42, p. 339.
  29. Casanova, D., Llunell, M., Alemany, P., and Alvarez, S., Chem.-Eur. J., 2005, vol. 11, p. 1479.
  30. Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian 16. Revision A. 03, Wallingford: Gaussian, 2016.
  31. Kohn, W. and Sham, L.J., Phys. Rev. A, 1965, vol. 140, p. 1133.
  32. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.
  33. Nikolaevskii, S.A., Kiskin, M.A., Starikova, A.A., et al., Russ. Chem. Bull., 2016, vol. 65, p. 2812.
  34. Nikolaevskii, S.A., Kiskin, M.A., Starikov, A.G., et al., Russ. J. Coord. Chem., 2019, vol. 45, no. 4, p. 273. https://doi.org/10.1134/S1070328419040067
  35. Gogoleva, N.V., Shmelev, M.A., Kiskin, M.A., et al., Russ. J. Coord. Chem., 2021, vol. 47, no. 4, p. 261. https://doi.org/10.1134/S1070328421040035
  36. Grimme, S., Ehrlich, S., and Goerigk, L.L., J. Comput. Chem., 2011, vol. 32, p. 1456.
  37. Yanai, T., Tew, D., and Handy, N., Chem. Phys. Lett., 2004, vol. 393, p. 51.
  38. Chemcraft–Graphical Software for Visualization of Quantum Chemistry Computations. Version 1.8. Build 682, https://www.chemcraftprog.com.
  39. Ge, C.-H., Zhang, R., Fan, P., Zhang, X.-D., et al., Chin. Chem. Lett., 2013, vol. 24, p. 73.
  40. Lou, Q.-Z., Z. Kristallogr.-New Cryst. Struct., 2007, vol. 222, p. 105.
  41. Shmelev, M.A., Gogoleva, N.V., Kuznetsova, G.N., et al., Russ. J. Coord. Chem., 2020, vol. 46, no. 8, p. 557. https://doi.org/10.31857/S0132344X2008006X
  42. Dankhar, S.S. and Nagaraja, C.M., J. Solid State Chem., 2020, vol. 290, p. 121560.
  43. Wang, X.L., Zhang, J.X., Liu, G.C., et al., Russ. J. Coord. Chem., 2010, vol. 36, p. 662.
  44. Bu, X.-H., Tong, M.-L., Li, J.-R., et al., Cryst. Eng. Comm., 2005, vol. 7, p. 411.
  45. Clegg, W., Little, I.R., and Straughan, B.P., Inorg. Chem., 1988, vol. 27, p. 1916.
  46. Clegg, W., Harbron, D.R., and Straughan, B.P., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1991, vol. 47, p. 267.
  47. Escobedo-Martinez, C., Lozada, M.C., and Gnecco, D., J. Chem. Cryst., 2012, vol. 42, p. 794.
  48. Pramanik, A., Fronczek, F.R., Venkatraman, R., and Hossain, M.A., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2013, vol. 69, p. m643.
  49. Necefoglu, H., Clegg, W., and Scott, A.J., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2002, vol. 58, p. m123.
  50. Jin, Z.-N. and Zhang, B.-S., Z.Kristallogr.-New Cryst. Struct., 2018, vol. 233, p. 179.
  51. Carballo, R., Covelo, B., Fernandez-Hermida, N., et al., J. Chem. Cryst., 2011, vol. 41, p. 1949.
  52. Tunsrichon, S., Sukpattanacharoen, C., Escudero, D., et al., Inorg. Chem., 2020, vol. 59, p. 6176.
  53. Carballo, R., Covelo, B., Garcia-Martinez, E., et al., Appl. Organomet. Chem., 2004, vol. 18, p. 201.
  54. Sen, S., Saha, M.K., Kundu, P., et al., Inorg. Chim. Acta, 1999, vol. 288, p. 118.
  55. Roy, S., Bauza, A., Frontera, A., et al., CrystEngComm, 2015, vol. 17, p. 3912.
  56. Bai, H., Gao, H., and Hu, M., Adv. Mater. Res., 2014, vol. 997, p. 140.
  57. Li, W., Li, C.-H., Yang, Y.-Q., and Li, D.-P., Chin. J. Inorg. Chem., 2008, vol. 24, p. 2060.
  58. Li, W., Li, C.-H., Yang, Y.-Q., et al., Chin. J. Inorg. Chem., 2007, vol. 23, p. 2013.
  59. Li, W.-W., Bing, Y., Zha, M.-Q., et al., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2011, vol. 67, p. m1464.
  60. Bing, Y., Li, X., Zha, M.-Q., and Wang, D.-J., Nano-Met. Chem., 2011, vol. 41, p. 798.
  61. Zha, M.-Q., Li, X., and Bing, Y., J. Coord. Chem., 2011, vol. 64, p. 473.
  62. Pruchnik, F.P., Dawid, U., and Kochel, A., Polyhedron, 2006, vol. 25, p. 3647.
  63. Liu, C.-S., Sanudo, E.C., Yan, L.-F., et al., Transition Met. Chem., 2009, vol. 34, p. 51.
  64. Song, W.-D., Yan, J.-B., and Hao, X.-M., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2008, vol. 64, p. m919.
  65. Liu, G.-C., Qu, Y., Wang, X.-L., Zhang, J.-W., et al., Z. Anorg. Allg. Chem., 2014, vol. 640, p. 1696.
  66. Feng, S., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2008, vol. 64, p. m817.
  67. Uvarova, M.A., Kushan, E.V., Andreev, M.V., et al., Russ. J. Inorg. Chem., 2012, vol. 57, p. 1314.
  68. Gomez, V. and Corbella, M., Eur. J. Inorg. Chem., 2009, p. 4471.
  69. Kruszynski, R., Malinowska, A., Czakis-Sulikowska, D., and Lamparska, A., J. Coord. Chem., 2009, vol. 62, p. 911.
  70. Shao, C.-Y., Song, S., Song, M., et al., Chin. Chem. Res., 2011, vol. 22, p. 29.
  71. Deng, Z.-P., Gao, S., Huo, L.-H., and Zhao, H., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2007, vol. 63, p. m2694.
  72. Li Zuo, Li Zuohong, Yang Yingqun, Chen Zhimin, and Wang Ying, Chin. J. Inorg. Chem., 2008, vol. 24, p. 1360.
  73. Yang, Y.-Q., Li, C.-H., Li, W., et al., Chin. J. Struct. Chem., 2006, vol. 25, p. 1409.
  74. Tabrizi, L., McArdle, P., Ektefan, M., and Chiniforoshan, H., Inorg. Chim. Acta, 2016, vol. 439, p. 138.
  75. Ge, C., Zhang, X., Yin, J., and Zhang, R., Chin. J. Chem., 2010, vol. 28, p. 2083.
  76. Torres, J.F., Bello-Vieda, N.J., Macias, M.A., et al., Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 2020, vol. 76, p. 166.
  77. Baur, A., Bustin, K.A., Aguilera, E., et al., Org. Chem. Front., 2017, vol. 4, p. 519.
  78. Gogoleva, N.V., Shmelev, M.A., Kiskin, M.A., et al., Russ. Chem. Bull., 2016, vol. 65, p. 1198.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Fragment of the polymer chain of compound I. Solvate water molecules are not shown. The dotted lines show hydrogen bonds.

Baixar (359KB)
3. Fig. 2. Illustration of the angles and distances under consideration in Table 4.

Baixar (76KB)
4. Fig. 3. Structure of molecule II.

Baixar (141KB)
5. Fig. 4. Fragment of the crystal packing of complex II. Only aromatic fragments involved in π···π interactions are shown.

Baixar (191KB)
6. Fig. 5. Fragment of the polymer chain of complex III. Projections along the axes b (a) and a (b) are shown.

Baixar (269KB)
7. Fig. 6. Structure of molecule IV.

Baixar (131KB)
8. Fig. 7. Spatial structure of the dimeric 2,3,4,5-tetrafluorobenzoate complex of cadmium with 1,10-phenanthroline and its bis-aquacomplex according to DFT calculations in various approximations. Hydrogen atoms are shown only in water molecules.

Baixar (196KB)
9. Fig. 8. Some bond lengths in cadmium complexes according to quantum chemical calculations: [Cd2(H2O)2(Chep)2(µ-6Htfb)2(6Htfb)2] (a), [Cd2(Ph)2(µ-6Htfb)2(6Htfb)2] (b), [Cd2(Ph)2(µ-Pfb)4] (in).

Baixar (417KB)

Declaração de direitos autorais © Российская академия наук, 2024