Effect of Substituents in the Pentafluorobenzoate and 2,3,4,5- and 2,3,5,6-Tetrafluorobenzoate Anions on the Structure of Cadmium Complexes
- Autores: Shmelev M.A.1, Razgonyaeva G.A.1, Yambulatov D.S.1, Starikov A.G.2, Sidorov A.A.1, Eremenko I.L.1
- 
							Afiliações: 
							- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Research Institute of Physical and Organic Chemistry, Southern Federal University
 
- Edição: Volume 50, Nº 4 (2024)
- Páginas: 231-250
- Seção: Articles
- URL: https://cardiosomatics.ru/0132-344X/article/view/667604
- DOI: https://doi.org/10.31857/S0132344X24040022
- EDN: https://elibrary.ru/NQCTRL
- ID: 667604
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
New cadmium 2,3,4,5-tetrafluorobenzoate (6HTfb) and 2,3,5,6-tetrafluorobenzoate (4Htfb) complexes, [Cd(6HTfb)(H2O)3]n·(6HTfb)·2nH2O (I), [Cd3(Phen)2(6HTfb)6] (II, Phen = 1,10-phenanthroline), [Cd2(Phen)2(4Htfb)4]n·2nH2O (III), and [Cd(Phen)2(4Htfb)2] (IV), were synthesized. Analysis of the obtained results and published data demonstrated that a decrease in the number of fluorine substituents is unfavorable for the formation of coordination polymers comprising stacked alternating fluorinated and nonfluorinated aromatic moieties. In the case of 2,4,5-trifluorobenzoate complex, a typical trivial structure of the binuclear cadmium complex with ligand-shielded metal core is formed. The synthesis of 2,3,4,5- and 2,3,5,6-tetrafluorobenzoate complexes produced an intermediate situation and demonstrated that the structure of complex formation products is affected by not only the number, but also the positions of fluorine substituents. Using quantum chemical calculations, it was shown that the formation of coordination polymers requires a molecular precursor with a Chinese lantern structure stable in solutions, while the formation of unusual flattened binuclear complexes with additionally coordinated water molecules requires doubly bridged binuclear complexes able to switch to a conformation with exposed coordinatively unsaturated metal centers.
Texto integral
 
												
	                        Sobre autores
M. Shmelev
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: sidorov@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
G. Razgonyaeva
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: sidorov@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
D. Yambulatov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: sidorov@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
A. Starikov
Research Institute of Physical and Organic Chemistry, Southern Federal University
														Email: sidorov@igic.ras.ru
				                					                																			                												                	Rússia, 							Rostov-on-Don						
A. Sidorov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: sidorov@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
I. Eremenko
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: sidorov@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Saxena, P. and Thirupathi, N., Polyhedron, 2015, vol. 98, no. 1, p. 238.
- Pryma, O.V., Petrusenko, S.R., Kokozay, V.N., et al., Inorg. Chem. Commun., 2003, vol. 6, no. 7, p. 896.
- Zhao, Q.-H., Ma, Y.-P., Wang, Q.-H., and Fang, R.-B., Chin. J. Struct. Chem., 2002, vol. 21, p. 513.
- Shmelev, M.A., Kuznetsova, G.N., Gogoleva, N.V., et al., Russ. Chem. Bull., 2021, vol. 70, no. 5, p. 830.
- Shmelev, M.A., Chistyakov, A.S., Razgonyaeva, G.A., et al., Crystals, 2022, vol. 12, p. 508.
- Yang, Y.-Q., Li, C.-H., Li, W., and Kuang, Y.-F., Chin. J. Inorg. Chem., 2009, vol. 25, p. 1120.
- Nie, J.-J., Pan, T.-T., Su, J.-R., and Xu, D.-J., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2010, vol. 66, p. m760.
- Gogoleva, N.V., Shmelev, M.A., Evstifeev, I.S., et al., Russ. Chem. Bull., 2016, vol. 65, p. 181.
- Li, W., Li, C.-H., Yang, Y.-Q., and Li, Y.-L., Chin. J. Inorg. Chem., 2010, vol. 26, p. 166.
- Kuznetsova, G.N., Yambulatov, D.S., Kiskin, M.A., et al., Russ. J. Coord. Chem., 2020, vol. 46, p. 553. https://doi.org/10.1134/S1070328420080047
- Itoh, T., Kondo, M., Kanaike, M., and Masaoka, S., CrystEngComm, 2013, vol. 15, p. 6122.
- Cockcroft, J.K., Rosu-Finsen, A., Fitch, A.N., and Williams, J.H., CrystEngComm, 2018, vol. 20, p. 6677.
- Lee, G.Y., Hu, E., Rheingold, A.L., Houk, K.N., and Sletten, E.M., Org. Chem., 2021, vol. 86, p. 8425.
- Shmelev, M.A., Kuznetsova, G.N., Dolgushin, F.M., et al, Russ. J. Coord. Chem., 2021, vol. 47, p. 127. https://doi.org/10.1134/S1070328421020068
- Shmelev, M.A., Voronina, J.K., Evtyukhin, M.A., et al., Inorganics, 2022, vol. 10, p. 194.
- Shmelev, M.A., Kiskin, M.A., Voronina, J.K., et al., Materials, 2020, vol. 13, no. 24, p. 5689.
- Voronina, J.K., Yambulatov, D.S., Chistyakov, A.S., et al., Crystals, 2023, vol. 13, p. 678.
- Li, J.-X. and Du, Z.-X., J. Cluster Sci., 2020, vol. 31, p. 507.
- Wu, W.P., Wang, J., Lu, L., Xie, B., Wu, Y., and Kumar, A., Russ. J. Coord. Chem., 2016, vol. 42, p. 71.
- Corradi, A.B., Menabue, L., Saladini, M., Sola, M., and Battaglia, L.P., Dalton Trans., 1992, p. 2623.
- Nikolaevskii, S.A., Evstifeev, I.S., and Kiskin, M.A., et al., Polyhedron, 2018, vol. 152, p. 61.
- Shmelev, M.A., Gogoleva, N.V., Dolgushin, F.M., et al., Russ. J. Coord. Chem., 2020, vol. 46, no. 7, p. 493. https://doi.org/10.1134/S1070328420070076
- Yang, Y.-Q., Li, C.-H., Li, W., and Kuang, Y.-F., Chin. J. Inorg. Chem., 2010, vol. 26, p. 1890.
- Zha, M.-Q., Li, X., and Bing, Y., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2010, vol. 67, p. m8.
- SMART (control) and SAINT (integration). Software. Version 5.0, Madison: Bruker AXS Inc., 1997.
- Sheldrick, G.M., SADABS, Madison: Bruker AXS Inc., 1997.
- Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.
- Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Crystallogr., 2009, vol. 42, p. 339.
- Casanova, D., Llunell, M., Alemany, P., and Alvarez, S., Chem.-Eur. J., 2005, vol. 11, p. 1479.
- Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian 16. Revision A. 03, Wallingford: Gaussian, 2016.
- Kohn, W. and Sham, L.J., Phys. Rev. A, 1965, vol. 140, p. 1133.
- Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.
- Nikolaevskii, S.A., Kiskin, M.A., Starikova, A.A., et al., Russ. Chem. Bull., 2016, vol. 65, p. 2812.
- Nikolaevskii, S.A., Kiskin, M.A., Starikov, A.G., et al., Russ. J. Coord. Chem., 2019, vol. 45, no. 4, p. 273. https://doi.org/10.1134/S1070328419040067
- Gogoleva, N.V., Shmelev, M.A., Kiskin, M.A., et al., Russ. J. Coord. Chem., 2021, vol. 47, no. 4, p. 261. https://doi.org/10.1134/S1070328421040035
- Grimme, S., Ehrlich, S., and Goerigk, L.L., J. Comput. Chem., 2011, vol. 32, p. 1456.
- Yanai, T., Tew, D., and Handy, N., Chem. Phys. Lett., 2004, vol. 393, p. 51.
- Chemcraft–Graphical Software for Visualization of Quantum Chemistry Computations. Version 1.8. Build 682, https://www.chemcraftprog.com.
- Ge, C.-H., Zhang, R., Fan, P., Zhang, X.-D., et al., Chin. Chem. Lett., 2013, vol. 24, p. 73.
- Lou, Q.-Z., Z. Kristallogr.-New Cryst. Struct., 2007, vol. 222, p. 105.
- Shmelev, M.A., Gogoleva, N.V., Kuznetsova, G.N., et al., Russ. J. Coord. Chem., 2020, vol. 46, no. 8, p. 557. https://doi.org/10.31857/S0132344X2008006X
- Dankhar, S.S. and Nagaraja, C.M., J. Solid State Chem., 2020, vol. 290, p. 121560.
- Wang, X.L., Zhang, J.X., Liu, G.C., et al., Russ. J. Coord. Chem., 2010, vol. 36, p. 662.
- Bu, X.-H., Tong, M.-L., Li, J.-R., et al., Cryst. Eng. Comm., 2005, vol. 7, p. 411.
- Clegg, W., Little, I.R., and Straughan, B.P., Inorg. Chem., 1988, vol. 27, p. 1916.
- Clegg, W., Harbron, D.R., and Straughan, B.P., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1991, vol. 47, p. 267.
- Escobedo-Martinez, C., Lozada, M.C., and Gnecco, D., J. Chem. Cryst., 2012, vol. 42, p. 794.
- Pramanik, A., Fronczek, F.R., Venkatraman, R., and Hossain, M.A., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2013, vol. 69, p. m643.
- Necefoglu, H., Clegg, W., and Scott, A.J., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2002, vol. 58, p. m123.
- Jin, Z.-N. and Zhang, B.-S., Z.Kristallogr.-New Cryst. Struct., 2018, vol. 233, p. 179.
- Carballo, R., Covelo, B., Fernandez-Hermida, N., et al., J. Chem. Cryst., 2011, vol. 41, p. 1949.
- Tunsrichon, S., Sukpattanacharoen, C., Escudero, D., et al., Inorg. Chem., 2020, vol. 59, p. 6176.
- Carballo, R., Covelo, B., Garcia-Martinez, E., et al., Appl. Organomet. Chem., 2004, vol. 18, p. 201.
- Sen, S., Saha, M.K., Kundu, P., et al., Inorg. Chim. Acta, 1999, vol. 288, p. 118.
- Roy, S., Bauza, A., Frontera, A., et al., CrystEngComm, 2015, vol. 17, p. 3912.
- Bai, H., Gao, H., and Hu, M., Adv. Mater. Res., 2014, vol. 997, p. 140.
- Li, W., Li, C.-H., Yang, Y.-Q., and Li, D.-P., Chin. J. Inorg. Chem., 2008, vol. 24, p. 2060.
- Li, W., Li, C.-H., Yang, Y.-Q., et al., Chin. J. Inorg. Chem., 2007, vol. 23, p. 2013.
- Li, W.-W., Bing, Y., Zha, M.-Q., et al., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2011, vol. 67, p. m1464.
- Bing, Y., Li, X., Zha, M.-Q., and Wang, D.-J., Nano-Met. Chem., 2011, vol. 41, p. 798.
- Zha, M.-Q., Li, X., and Bing, Y., J. Coord. Chem., 2011, vol. 64, p. 473.
- Pruchnik, F.P., Dawid, U., and Kochel, A., Polyhedron, 2006, vol. 25, p. 3647.
- Liu, C.-S., Sanudo, E.C., Yan, L.-F., et al., Transition Met. Chem., 2009, vol. 34, p. 51.
- Song, W.-D., Yan, J.-B., and Hao, X.-M., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2008, vol. 64, p. m919.
- Liu, G.-C., Qu, Y., Wang, X.-L., Zhang, J.-W., et al., Z. Anorg. Allg. Chem., 2014, vol. 640, p. 1696.
- Feng, S., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2008, vol. 64, p. m817.
- Uvarova, M.A., Kushan, E.V., Andreev, M.V., et al., Russ. J. Inorg. Chem., 2012, vol. 57, p. 1314.
- Gomez, V. and Corbella, M., Eur. J. Inorg. Chem., 2009, p. 4471.
- Kruszynski, R., Malinowska, A., Czakis-Sulikowska, D., and Lamparska, A., J. Coord. Chem., 2009, vol. 62, p. 911.
- Shao, C.-Y., Song, S., Song, M., et al., Chin. Chem. Res., 2011, vol. 22, p. 29.
- Deng, Z.-P., Gao, S., Huo, L.-H., and Zhao, H., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2007, vol. 63, p. m2694.
- Li Zuo, Li Zuohong, Yang Yingqun, Chen Zhimin, and Wang Ying, Chin. J. Inorg. Chem., 2008, vol. 24, p. 1360.
- Yang, Y.-Q., Li, C.-H., Li, W., et al., Chin. J. Struct. Chem., 2006, vol. 25, p. 1409.
- Tabrizi, L., McArdle, P., Ektefan, M., and Chiniforoshan, H., Inorg. Chim. Acta, 2016, vol. 439, p. 138.
- Ge, C., Zhang, X., Yin, J., and Zhang, R., Chin. J. Chem., 2010, vol. 28, p. 2083.
- Torres, J.F., Bello-Vieda, N.J., Macias, M.A., et al., Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 2020, vol. 76, p. 166.
- Baur, A., Bustin, K.A., Aguilera, E., et al., Org. Chem. Front., 2017, vol. 4, p. 519.
- Gogoleva, N.V., Shmelev, M.A., Kiskin, M.A., et al., Russ. Chem. Bull., 2016, vol. 65, p. 1198.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 








