2D Coordination Polymers of Zn(II) with Diethylmalonic Acid Dianions and 4,4´-bipyridine: Synthesis and Structures

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Two new coordination compounds of zinc(II) with diethylmalonic acid anions (Et2mal2–) and 4,4´-bipyridine (4,4´-bipy) are synthesized: {[Zn(H2O)(4,4´-bipy)(Et2mal)]· 0.5C2H5OH·1.5H2O}n (I) and {[Zn4(H2O)2(4,4´-bipy)3(Et2mal)4]·6H2O}n (II). According to the XRD data (CIF files CCDC nos. 2323336 (I) and 2323337 (II)), both compounds are 2D polymers with the sql and bey topology, respectively. The choice of the initial zinc salt and solvent predetermines the compositions and structures of the polymers under similar synthesis conditions.

全文:

受限制的访问

作者简介

A. Chistyakov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: ezorinatikhonova@gmail.com
俄罗斯联邦, Moscow

E. Zorina-Tikhonova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ezorinatikhonova@gmail.com
俄罗斯联邦, Moscow

A. Vologzhanina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: ezorinatikhonova@gmail.com
俄罗斯联邦, Moscow

M. Kiskin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: ezorinatikhonova@gmail.com
俄罗斯联邦, Moscow

I. Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: ezorinatikhonova@gmail.com
俄罗斯联邦, Moscow; Moscow

参考

  1. Bondarenko G.N., Ganina O.G., Lysova A.A. et al. // J. CO2 Util. 2021. V. 53. P. 101718.
  2. Biradha K., Das S.K., Bu X.-H. // Cryst. Growth Des. 2022. V. 22. № 4. P. 2043.
  3. Shao D., Moorthy S., Yang X., Yang J., Shi L., Singh S. K., Tian Z. // Dalton Trans. 2022. V. 51. № 2. P. 695.
  4. He C.J., Wang Y.F., Li S.H. // Russ. J. Gen. Chem. 2023. V. 93. № 4. P. 1004.
  5. Yambulatov D.S., Voronina J.K., Goloveshkin A.S. et al. // Int. J. Mol. Sci. 2023. V. 24. P. 215.
  6. Kuznetsova A., Matveevskaya V., Pavlov D. et al. // Materials, 2020. V. 13. № 12. P. 2699.
  7. Pavlov D.I., Ryadun A.A., Samsonenko D.G. et al. // Russ. Chem. Bull. 2021. V. 70. № 5. P. 857.
  8. Lysova A.A., Kovalenko K.A., Nizovtsev A.S. et al. // Chem. Eng. J. 2023. V. 453. P. 139642.
  9. Gu Y., Zheng J.J., Otake K.I. et al. // Nat. Commun. 2023. V. 14 № 1. P. 4245.
  10. Lysova A.A., Samsonenko D.G., Kovalenko K.A. et al. // Angew. Chem., Int. Ed. 2020. V. 59. № 46. P. 20561.
  11. Demakov P.A. // Polymers. 2023. V. 15. № 13. P. 2891.
  12. Бажина Е.С., Гоголева Н.В., Зорина-Тихонова Е.Н. et al. // Журн. структур. химии. 2019. V. 60. № 6. P. 893.
  13. Su Y., Otake K.I., Zheng J.J. et al. // Nature. 2022. V. 611. № 7935. P. 289.
  14. Buasakun J., Srilaoong P., Chainok K. et al. // Inorg. Chim. Acta. 2020. V. 511. P. 119839.
  15. Wang X.W., Su Y.Q., Blatov V.A., Cui G.H. // J. Mol. Struct. 2023. V. 1272. P. 134239.
  16. Matveevskaya V.V., Pavlov D.I., Ryadun A.A. et al. // Inorganics. 2023. V. 11. № 7. P. 264.
  17. Sezer G.G., Yeşilel O.Z., Şahin O. et al. // J. Mol. Struct. 2017. V. 1143. P. 355.
  18. Zorina-Tikhonova E.N., Chistyakov A.S., Kiskin M.A. et al. // IUCrJ. 2018. V. 5. № 3. P. 293−303.
  19. Volodin A.D., Korlyukov A.A., Zorina-Tikhonova E.N. et al. // Chem. Commun. 2018. V. 54. № 98. P. 13861.
  20. Delgado F.S., Sanchiz J., Ruiz-Pérez C. et al. // CrystEngComm. 2003. V. 5. № 48. P. 280.
  21. Liu K., Hu H., Sun J. et al. // J. Mol. Struct. 2017. V. 1134. P. 174.
  22. Hu M., Peng D.L., Zhao H. et al. // J Coord Chem. 2015. V. 68. № 11. P. 1947.
  23. Zhao W., Fan J., Okamura T.A. et al. // J. Solid State Chem. 2004. V. 177. № 7. P. 2358.
  24. Jiang C.H., Qi Y.M., Sun Y. et al. // J. Mol. Struct. 2012. V. 1017. P. 65.
  25. Zhu H.L., Zheng Y.Q. // Synth. react. inorg. met.-org. chem. 2012. V. 42. № 5. P. 736.
  26. Hyun M.Y., Hwang I.H., Lee M.M. et al. // Polyhedron. 2013. V. 53. P. 166.
  27. Zhang Y., Kang X., Guo P et al. // Arab. J. Chem. 2022. V. 15. № 8 P. 103955.
  28. Zhang X., Lu C., Zhang Q. et al. // EurJIC. 2003. V. 2003. № 6. P. 1181.
  29. Ni T., Xing F., Shao M. et al. // Cryst. Growth Des. 2011. V. 11. № 7. P. 2999.
  30. Liu Q., Li Y.Z., Song Y., Liu H., Xu Z. // J. Solid State Chem. 2004. V. 177. № 12. P. 4701.
  31. Zhang X., Xia B., Li X.Y et al. // J. Solid State Chem. 2020. V. 287. P. 121374.
  32. Huang Q., Wang X., Li T., Meng X. // J. Coord. Chem. 2015. V. 68. № 1. P. 88.
  33. Yang J.X., Qin Y.Y., Cheng J.K et al. // Cryst. Growth Des. 2015. V. 15. № 5. P. 2223.
  34. Basu T., Sparkes H.A., Bhunia M.K., Mondal R. // Cryst. Growth Des. 2009. V. 9. № 8. P. 3488.
  35. Deniz M., Pasan J., Fabelo O. // New J Chem. 2010. V. 34. № 11. P. 2515.
  36. Zhang M.L., Wang J.J., Chen X.L. // J. Inorg. Organomet. Polym. Mater. 2014. V. 24. P. 879.
  37. Deniz M., Pasan J., Fabelo O. et al. // C. R. Chim. 2012. V. 15. № 10. P. 911.
  38. Gao E.J., Wang R.S., Lin L. et al. // Russ. J. Coord. Chem. 2012. V. 38 P. 386.
  39. Zorina-Tikhonova E.N., Chistyakov A.S., Kiskin M.A. et al. // IUCrJ. 2018. V. 5. P. 293.
  40. Déniz M., Pasán J., Rasines B. et al. // Inorg. Chem. Front. 2017. V. 4. № 8. P. 13842.
  41. Deniz M., Hernandez-Rodriguez I., Pasan J. et al. // Cryst. Growth Des. 2012. V. 12. № 9. P. 4505.
  42. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3.
  43. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3.
  44. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. № 2. P. 339.
  45. Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576.
  46. Shevchenko A.P., Blatov, V.A. // Struct. Chem. 2021. V. 32. P. 507.
  47. Alvarez S., Alemany P., Casanova D., Cirera J., Llunell M., Avnir D. // Coord. Chem. Rev. 2005. V. 249. № 17−18. P. 1693.
  48. O´Keeffe M., Peskov M.A., Ramsden S.J., Yaghi O.M. // Acc. Chem. Res. 2008. V. 41. № 12. P. 1782.
  49. Gao E.J., Wang R.S., Lin L. et al. // Russ. J. Coord. Chem. 2012. V. 38. P. 386.
  50. Zorina-Tikhonova E.N., Chistyakov A.S., Novikova V.A et al. // CrystEngComm. 2023. V. 25. № 19. P. 2859.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Independent part of the cell I (a) and II (b) in the representation of atoms by thermal ellipsoids (depicted with probability p = 50%)

下载 (223KB)
3. Fig. 2. Fragments of layers of composition [Zn(H2O)(4,4´-bipy)(Et2mal)] and [Zn4(H2O)2(4,4´-bipy)3(Et2mal)4] in I (a) and II (c) and meshes obtained by simplifying these structures with sql (b) and bey (d) topologies, respectively

下载 (411KB)

版权所有 © Российская академия наук, 2024