Dependence of Resonant Light Wavefront Reversal on Polaritons on the Optical Pump Intensity in Zinc Oxide Films
- Authors: Gruzintsev A.N.1
- 
							Affiliations: 
							- Institute of Microelectronic Technology and Ultra-High-Purity Materials, Russian Academy of Sciences
 
- Issue: Vol 118, No 1-2 (7) (2023)
- Pages: 23-29
- Section: Articles
- URL: https://cardiosomatics.ru/0370-274X/article/view/663091
- DOI: https://doi.org/10.31857/S1234567823130062
- EDN: https://elibrary.ru/GAWRST
- ID: 663091
Cite item
Abstract
The possibility of resonant light wavefront reversal in an excited semiconductor medium has been demonstrated theoretically and experimentally. Induced light wavefront reversal in the infrared spectral range equal to half the energy of the radiative recombination of polaritons has been detected on epitaxial ZnO films under nitrogen laser pumping at room temperature. Dependences of the intensity of the wavefront reversal signal on the energy of the incident photon and the laser pump intensity have been examined.
About the authors
A. N. Gruzintsev
Institute of Microelectronic Technology and Ultra-High-Purity Materials, Russian Academy of Sciences
							Author for correspondence.
							Email: gran@iptm.ru
				                					                																			                												                								Chernogolovka, Moscow region, 142432 Russia						
References
- Y. Chen, D. M. Bagnall, Z. Zhu, T. Sekiuchi, and K. Park, J. Cryst. Growth 181, 165 (1997).
- J. Chen and T. Fujita, Jpn. J. Appl. Phys. 41, L203 (2002).
- А. Н. Грузинцев, В. Т. Волков, Л. Бартхоу, П. Беналул, ФТП 36(6), 741 (2002).
- P. A. Belanger, A. Hardy, and A. E. Seigman, Appl. Optic 19, 602 (1980).
- J. F. Lam and W. P. Brown, Opt. Lett. 5, 61 (1980).
- D. M. Bloom and G. C. Bjoklund, Appl. Phys. Lett. 31, 592 (1977).
- А. Н. Грузинцев, В. Т. Волков, ФТП 38, 543 (2004).
- А. Н. Грузинцев, ФТП 43, 289 (2009).
- Ф. Качмарек, Введение в физику лазеров, Мир, M. (1981), с. 256.
- Y. G. Wang, N. Ohashi, Y. Wada, I. Sakaguchi, T. Ohgaki, and H. Haneda, J. Appl. Phys. 100, 023524 (2006).
- H. H. Eichler and O. Mehl, J. Nonlinear Opt. Phys. Mater. 10, 43 (2001).
- I. M. Vellekoop, M. Cui, and C. Yang, Appl. Phys. Lett. 101, 081108 (2012).
- A. Y. Okulov, J. Phys. B 41, 101001 (2008).
- G. S. He, Prog. Quantum Electron. 26, 131 (2002).
- P. V. Polyanskii and K. V. Felde, Opt. Spectrosc 98, 913 (2005).
- M. Y. Lanzerotti, A. L. Gaeta, and R. W. Boyd, Phys. Rev. A 51, 3182 (1995).
- M. Jang, C. Yang, and I. M. Vellekoop, Phys. Rev. Lett. 118, 093902 (2017).
- C. Li, Inrared and Laser Engineering 48, 0702001 (2019).
- D. M. Pepper and A. Yariv, Opt. Lett. 5, 59 (1980).
- M. R. Belic, D. Timitievich, and W. Krolikowski, J. Opt. Soc. Am. B 8, 1723 (1991).
- А. Н. Грузинцев, ФТП 54, 700 (2020).
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					