Dependence of Resonant Light Wavefront Reversal on Polaritons on the Optical Pump Intensity in Zinc Oxide Films
- Autores: Gruzintsev A.N.1
- 
							Afiliações: 
							- Institute of Microelectronic Technology and Ultra-High-Purity Materials, Russian Academy of Sciences
 
- Edição: Volume 118, Nº 1-2 (7) (2023)
- Páginas: 23-29
- Seção: Articles
- URL: https://cardiosomatics.ru/0370-274X/article/view/663091
- DOI: https://doi.org/10.31857/S1234567823130062
- EDN: https://elibrary.ru/GAWRST
- ID: 663091
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The possibility of resonant light wavefront reversal in an excited semiconductor medium has been demonstrated theoretically and experimentally. Induced light wavefront reversal in the infrared spectral range equal to half the energy of the radiative recombination of polaritons has been detected on epitaxial ZnO films under nitrogen laser pumping at room temperature. Dependences of the intensity of the wavefront reversal signal on the energy of the incident photon and the laser pump intensity have been examined.
Sobre autores
A. Gruzintsev
Institute of Microelectronic Technology and Ultra-High-Purity Materials, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: gran@iptm.ru
				                					                																			                												                								Chernogolovka, Moscow region, 142432 Russia						
Bibliografia
- Y. Chen, D. M. Bagnall, Z. Zhu, T. Sekiuchi, and K. Park, J. Cryst. Growth 181, 165 (1997).
- J. Chen and T. Fujita, Jpn. J. Appl. Phys. 41, L203 (2002).
- А. Н. Грузинцев, В. Т. Волков, Л. Бартхоу, П. Беналул, ФТП 36(6), 741 (2002).
- P. A. Belanger, A. Hardy, and A. E. Seigman, Appl. Optic 19, 602 (1980).
- J. F. Lam and W. P. Brown, Opt. Lett. 5, 61 (1980).
- D. M. Bloom and G. C. Bjoklund, Appl. Phys. Lett. 31, 592 (1977).
- А. Н. Грузинцев, В. Т. Волков, ФТП 38, 543 (2004).
- А. Н. Грузинцев, ФТП 43, 289 (2009).
- Ф. Качмарек, Введение в физику лазеров, Мир, M. (1981), с. 256.
- Y. G. Wang, N. Ohashi, Y. Wada, I. Sakaguchi, T. Ohgaki, and H. Haneda, J. Appl. Phys. 100, 023524 (2006).
- H. H. Eichler and O. Mehl, J. Nonlinear Opt. Phys. Mater. 10, 43 (2001).
- I. M. Vellekoop, M. Cui, and C. Yang, Appl. Phys. Lett. 101, 081108 (2012).
- A. Y. Okulov, J. Phys. B 41, 101001 (2008).
- G. S. He, Prog. Quantum Electron. 26, 131 (2002).
- P. V. Polyanskii and K. V. Felde, Opt. Spectrosc 98, 913 (2005).
- M. Y. Lanzerotti, A. L. Gaeta, and R. W. Boyd, Phys. Rev. A 51, 3182 (1995).
- M. Jang, C. Yang, and I. M. Vellekoop, Phys. Rev. Lett. 118, 093902 (2017).
- C. Li, Inrared and Laser Engineering 48, 0702001 (2019).
- D. M. Pepper and A. Yariv, Opt. Lett. 5, 59 (1980).
- M. R. Belic, D. Timitievich, and W. Krolikowski, J. Opt. Soc. Am. B 8, 1723 (1991).
- А. Н. Грузинцев, ФТП 54, 700 (2020).
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
