Gluon Anomaly and the Violation of the Zweig Rule
- Authors: Osipov A.A1
- 
							Affiliations: 
							- Joint Institute for Nuclear Research, 141980, Dubna, Moscow region, Russia
 
- Issue: Vol 117, No 11-12 (6) (2023)
- Pages: 894-900
- Section: Articles
- URL: https://cardiosomatics.ru/0370-274X/article/view/663155
- DOI: https://doi.org/10.31857/S1234567823120042
- EDN: https://elibrary.ru/EVDGIS
- ID: 663155
Cite item
Abstract
It is well known that the gluon anomaly is responsible for the mass of the U(1) Goldstone boson. It is also manifested in the properties of pseudo-Goldstone states: the gluon anomaly in the next order of the 1/Nc expansion induces interactions violating the Zweig rule. A necessary condition for this is the explicit breaking of the chiral symmetry by the masses of light quarks. One of the physical consequences is that the η–η' mixing does not affect the 
 amplitude. Another consequence is the suppression of the first 1/Nc correction to the η–η' mixing angle. The mechanism of such suppression is discussed in detail. The conclusions are based on the 1/Nc expansion and the effective meson Lagrangian of the Nambu–Jona-Lasinio model and are compared with the results of the 1/Nc chiral perturbation theory.
About the authors
A. A Osipov
Joint Institute for Nuclear Research, 141980, Dubna, Moscow region, Russia
							Author for correspondence.
							Email: aaosipov@jinr.ru
				                					                																			                												                														
References
- S. Weinberg, Phys. Rev. D 11, 3583 (1975).
- G. 't Hooft, Nucl. Phys. B 72, 461 (1974).
- E. Witten, Nucl. Phys. B 160, 57 (1979).
- H. Leutwyler, Phys. Lett. B 374, 163 (1996).
- H. Leutwyler, Phys. Lett. B 374, 181 (1996).
- R. Kaiser and H. Leutwyler, Eur. Phys. J. C 17, 623 (2000).
- P. Herrera-Sikl'ody, J. I. Latorre, P. Pascual, and J. Taron, Nucl. Phys. B 497, 345 (1997).
- A.A Osipov, JETP Lett. 115(6), 30 (2022).
- A.A. Osipov, JETP Lett. 115, 371 (2022).
- A.A. Osipov, arXiv:hep-ph/2302.14118 (2023).
- A.A. Osipov, arXiv:hep-ph/2303.01865 (2023).
- Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).
- Y. Nambu and G. Jona-Lasinio, Phys. Rev. 124, 246 (1961).
- M.K. Volkov, ЭЧАЯ 17, 432 (1986).
- D. Ebert and H. Reinhardt, Nucl. Phys. B 271, 188 (1986).
- A.A. Osipov, JETP Lett. 113(6), 413 (2021).
- A.A. Osipov, Phys. Lett. B 817, 136300 (2021).
- A.A. Osipov, Phys. Rev. D 104(10), 105019 (2021).
- G. Veneziano, Nucl. Phys. B 159, 213 (1979).
- C. Rosenzweig, J. Schechter, and G. Trahern, Phys. Rev. D 21, 3388 (1980).
- P. Di Vecchia and G. Veneziano, Nucl. Phys. B 171, 253 (1980).
- P. Di Vecchia, F. Nicodemi, R. Pettorino, and G. Veneziano, Nucl. Phys. B 181, 318 (1981).
- G. Cvetic, Ann. Physics 255, 165 (1997).
- A. Manohar and H. Georgi, Nucl. Phys. B 234, 189 (1984).
- H. Leutwyler, Nucl. Phys. B (Proc. Suppl.) 64, 223 (1998).
- J. L. Goity, A.M. Bernstein, and B.R. Holstein, Phys. Rev. D 66, 076014 (2002).
- D. J. Gross, S.B. Treiman, and F. Wilczek, Phys. Rev. D 19, 2188 (1979).
- P. Kroll, Mod. Phys. Lett. A 20, 2667 (2005).
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					