Dependence of the Group Specificity of Immunoenzyme Determination of Penicillins in Milk on the Temperature and Duration of Antibiotic Cross Reactions with Polyclonal Antibodies
- Authors: Kuprienko O.S.1, Vashkevich I.I.1, Zilberman A.I.1, Sviridov O.V.1
-
Affiliations:
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus
- Issue: Vol 60, No 1 (2024)
- Pages: 110-118
- Section: Articles
- URL: https://cardiosomatics.ru/0555-1099/article/view/674581
- DOI: https://doi.org/10.31857/S0555109924010121
- EDN: https://elibrary.ru/HBQNGZ
- ID: 674581
Cite item
Abstract
The influence of thermodynamic and kinetic conditions on the interaction of polyclonal antibodies to penicillins with the antibiotics of a penicillin group was studied in the system of a direct enzyme-linked immunosorbent assay (ELISA). Minimum differences in the cross reactions of the polyclonal antibodies with different penicillins were observed when the ELISA was carried out at 4°C for 1 hour. An increase in temperature and duration of the assay led to an increase in antibodies reactivity only to amoxicillin, and significantly enhanced differences among the sensitivities of individual penicillins determination. Under the chosen assay conditions, the following antibodies cross-reactivity values were obtained: to penicillin G — 90%, to ampicillin — 100%, to amoxicillin — 110%. The analytical sensitivity was 0.03 ng/mL for ampicillin, and the limit of ampicillin quantification in milk was 0.4 μg/L. The developed group-specific ELISA was used for the determination in milk of seven penicillins that are regulatory controlled in foods and raw materials of animal origin — penicillin G, ampicillin, amoxicillin, cloxacillin, oxacillin, dicloxacillin and nafcillin.
Full Text

About the authors
O. S. Kuprienko
Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus
Author for correspondence.
Email: kuprienko@iboch.by
Belarus, Minsk, 220084
I. I. Vashkevich
Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus
Email: kuprienko@iboch.by
Belarus, Minsk, 220084
A. I. Zilberman
Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus
Email: kuprienko@iboch.by
Belarus, Minsk, 220084
O. V. Sviridov
Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus
Email: kuprienko@iboch.by
Belarus, Minsk, 220084
References
- Miller E. L. // J. Midwifery Women’s Health. 2002. V. 47. № 6. P. 426–434. https://doi.org/10.1016/s1526-9523(02)00330-6
- Nathwani D., Wood M. J. // Drugs. 1993. V. 45. № 6. P. 866–894. https://doi.org/10.2165/00003495-199345060-00002
- Шульга Н. Н., Шульга И. С., Плавшак Л. П. // Тенденции развития науки и образования. 2019. Т. 46. № 5. С. 32–35. https://doi.org/10.18411/lj-01-2019-98
- Sazykin I. S., Khmelevtsova L. E., Seliverstova E. Y., Sazykina M. A. // Appl. Biochem. Microbiol. 2021. V. 57. № 1. P. 20–30. https://doi.org/10.1134/S0003683821010166
- Berendonk T. U., Manaia C. M., Merlin C., Fatta-Kassinos D., Cytryn E., Walsh F., et al. // Nat. Rev. Microbiol. 2015. V. 13. P. 310–317. https://doi.org/10.1038/nrmicro3439
- Шевелева С. А., Хотимченко С. А., Минаева Л. П., Смотрина Ю. В. // Вопросы питания. 2021. Т. 90. № 3. С. 50–57. https://doi.org/10.33029/0042-8833-2021-90-3-50-57
- Van Hoek A. H.A.M., Mevius D., Guerra B., Mullany P., Roberts A. P., Aarts H. J.M. // Front. Microbiol. 2011. V. 2. Article 203. https://doi.org/10.3389/fmicb.2011.00203
- Mikhaleva T. V., Ilyasov P. V., Zakharova O. I. // Appl. Biochem. Microbiol. 2019. V. 55. № 2. P. 99–106. https://doi.org//10.1134/S000368381902011X
- Решение Коллегии Евразийской экономической комиссии от 13 февраля 2018 г. № 28. docs.eaeunion.org/docs/ru-ru/01217013/clc-d_15022018_28
- European Comission. Council Regulation (EU) No. 37/2010 of 22 December 2009 on Pharmacologically Active Substances and their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin. // Official Journal of the European Union. 2010. L 15/10.
- Barros S. C., Silva A. S., Torres D. // Antibiotics 2023. V. 12. № 2. P. 202. https://doi.org/10.3390/antibiotics12020202
- Moga A., Vergara-Barberán M., Lerma-García M.J., Carrasco-Correa E.J., Herrero-Martínez J.M., Simó-Alfonso E.F. // Compr. Rev. Food Sci. Food Saf. 2021. V. 20. № 2. P. 1681–1716. https://doi.org/10.1111/1541-4337.12702
- Marazuela M. D., Bogialli S. // Anal. Chim. Acta. 2009. Vol. 645. № 1–2. P. 5–17. https://doi.org/10.1016/j.aca.2009.04.031
- Holstege D. M., Puschner B., Whitehead G., Galey F. D. // J. Agric. Food. Chem. 2002. V. 50. № 2. P. 406–411. https://doi.org/10.1021/jf010994s
- Pugajeva I., Ikkere L. E., Judjallo E., Bartkevics V. // J. Pharm. Biomed. Anal. 2019. V. 166. P. 252–263. https://doi.org/10.1016/j.jpba.2019.01.024
- Bessaire T., Mujahid C., Beck A., Tarres A., Savoy M. C., Woo P. M. et al. // Food Addit. Contam. Part A. 2018. V. 35. № 4. P. 661–673. https://doi.org/10.1080/19440049.2018.1426891
- Dzantiev B. B., Byzova N. A., Urusov A. E., Zherdev A. V. // Trends Anal. Chem. 2014. V. 55. P. 81–93. https://doi.org/10.1016/j.trac.2013.11.007.
- Reig M., Toldrá F. // Meat Sci. 2008. V. 78. № 1–2. P. 60–67. https://doi.org/10.1016/j.meatsci.2007.07.029
- Duffy G. F., Moore E. J. // Anal. Lett. 2017. V. 50. № 1. P. 1–32. https://doi.org/10.1080/00032719.2016.1167900
- Xu F., Ren K., Yang Y. Z., Guo J. P., Ma G. P., Liu Y. M. et al. // J. Integ. Agric. 2015. V. 14. № 11. P. 2282–2295. https://doi.org/10.1016/S2095-3119(15)61121-2.
- Serchenya T. S., Semizhon P. A., Schaslionak A. P., Harbachova I. V., Vashkevich I. I., Sviridov O. V. // Appl. Biochem. Microbiol. 2023. V. 59. № 1. P. 79–92. https://doi.org/10.1134/S0003683823010106
- Samsonova Z. V., Shchelokova O. S., Ivanova N. L., Rubtsova M. Y., Egorov A. M. // Appl. Biochem. Microbiol. 2005. V. 41. № 6. P. 589–595. https://doi.org/10.1007/s10438-005-0107-4
- Bacigalupo M. A., Meroni G., Secundo F., Lelli R. // Talanta. 2008. V. 77. № 1. P. 126–130. https://doi.org/10.1016/j.talanta.2008.05.057
- Jiao S. N., Wang P., Zhao G. X., Zhang H. C., Liu J., Wang J. P. // J. Environ. Sci. Health B. 2013. V. 48. № 6. P. 486–494. https://doi.org/10.1080/03601234.2013.761908
- Zeng K., Zhang J., Wang Y., Wang Z. H., Zhang S. X., Wu C. M. et al. // Biomed. Environ. Sci. 2013. V. 26. № 2. P. 100–109. https://doi.org/10.3967/0895-3988.2013.02.004
- Peng, J., Cheng, G., Huang, L., Wang Y., Hao H., Peng D. et al. // Anal. Bioanal. Chem. 2013. V. 405. P. 8925–8933. https://doi.org/10.1007/s00216-013-7311-5
- Serchenya T. S., Harbachova I. V., Sviridov O. V. // Russ. J. Bioorg. Chem. 2022. V. 48. № 1. P. 85–95. https://doi.org/10.1134/S1068162022010125
- Shanin I. A., Eremin S. A., Zvereva E. A., Zherdev A. V., Dzantiev B. B., Sviridov O. V. // Appl. Biochem. Microbiol. 2019. V. 55. № 5. P. 563–569. https://doi.org/10.1134/S0003683819050132
- Kuprienko O. S., Serchenya T. S., Vashkevich I. I., Harbachova I. V., Zilberman A. I., Sviridov O. V. // Russ. J. Bioorg. Chem. 2022. V. 48. № 1. P. 105–114. https://doi.org/10.1134/S106816202201006X
- Sotnikov D. V., Zherdev A. V., Zvereva E. A., Eremin S. A., Dzantiev B. B. // Appl. Sci. 2021. V. 11. № 14. Article 6581. https://doi.org/10.3390/app11146581
- Boutten B., Ezan E., Mamas S., Dray F. // Clin. Chem. 1991. V. 37. № 3. P. 394–397. https://doi.org/10.1093/clinchem/37.3.394
- Sulea T., Rohani N., Baardsnes J., Corbeil C. R., Deprez C., Cepero-Donates Y. et al. // MAbs. 2020. Vol. 12. № 1. Article 1682866. https://doi.org/10.1080/19420862.2019.1682866
- Miller J. J., Valdes R. // Clin. Chem. 1991. V. 37. № 2. P. 144–153. https://doi.org/10.1093/clinchem/37.2.144
- Sheehan C., He J., Smith M. The Immunoassay Handbook. 4 Ed. /Ed. D. Wild. Amsterdam: Elsevier, 2013. P. 395–402. https://doi.org/10.1016/B978-0-08-097037-0.00026-9
- Komova N. S., Berlina A. N., Zherdev A. V., Dzantiev B. B. // Orient. J. Chem. 2020. V. 36. № 1. P. 21–25. https://doi.org/10.13005/ojc/360103
Supplementary files
