Effect of Nε-acetylation on the Enzymatic Activity of Escherichia coli Glyceraldehyde-3-phosphate Dehydrogenase
- Authors: Plekhanova N.S.1, Altman I.B.2, Yurkova M.S.1, Fedorov A.N.1
-
Affiliations:
- Federal Research Centre «Fundamentals of Biotechnology of the Russian Academy of Sciences
- MIREA – Russian Technological University
- Issue: Vol 59, No 6 (2023)
- Pages: 564-572
- Section: Articles
- URL: https://cardiosomatics.ru/0555-1099/article/view/674586
- DOI: https://doi.org/10.31857/S0555109923060119
- EDN: https://elibrary.ru/CWOIDD
- ID: 674586
Cite item
Abstract
The regulation of cellular metabolism is a topic of interest for both fundamental and applied science, as the findings can be used in various biotechnological industries. One of the universal regulatory mechanisms that affects most cellular processes is the acetylation of lysine residues in central metabolic enzymes, such as glyceraldehyde-3-phosphate dehydrogenase. In this work, we investigated the effect of acetylation and deacetylation on the activity of both wild type and mutant E. coli glyceraldehyde-3-phosphate dehydrogenase. We found that in vitro acetylation of wild-type GAPDH by PatZ acetyltransferase increased its enzymatic activity by twofold, while subsequent deacetylation restored the activity to initial level. For mutant forms of glyceraldehyde-3-phosphate dehydrogenase, we demonstrated that the introduction of additional acetylation sites due to mutations altered the impact of acetylation/deacetylation processes on glyceraldehyde-3-phosphate dehydrogenase activity. Our data suggest a re-evaluation of the role of acetylation in regulating glyceraldehyde-3-phosphate dehydrogenase activity and its involvement in E. coli metabolism.
About the authors
N. S. Plekhanova
Federal Research Centre «Fundamentals of Biotechnology of the Russian Academy of Sciences
Author for correspondence.
Email: plekhanovans@mail.ru
Russia, 119071, Moscow
I. B. Altman
MIREA – Russian Technological University
Email: plekhanovans@mail.ru
Russia, 119454, Moscow
M. S. Yurkova
Federal Research Centre «Fundamentals of Biotechnology of the Russian Academy of Sciences
Email: plekhanovans@mail.ru
Russia, 119071, Moscow
A. N. Fedorov
Federal Research Centre «Fundamentals of Biotechnology of the Russian Academy of Sciences
Email: plekhanovans@mail.ru
Russia, 119071, Moscow
References
- Kuhn M.L., Zemaitaitis B., Hu L.I., Sahu A., Sorensen D., Minasov G. et al. //PLoS ONE. 2014. V. 9. № 4. P. e94816. https://doi.org/10.1371/journal.pone.0094816
- Wang Q., Zhang Y., Yang C., Xiong H., Lin Y., Yao J. et al. // Science. 2010. V. 327. P. 1004–1007.
- Verdin E., Ott M. //Molecular Cell. 2013. T. 51. № 2. C. 132–134.
- Slivinskaya E.A., Plekhanova N.S., Altman I.B., Yampolskaya T.A. // Microorganisms. 2022. V. 10. P. 976.https://doi.org/10.3390/microorganisms10050976
- Schilling B., Basisty N., Christensen D.G., Sorensen D., Orr J.S., Wolfe A.J. et al. //J. Bacteriol. 2019. V. 201. № 9. https://doi.org/10.1128/JB.00768-18
- Castaño-Cerezo S., Bernal V., Post H., Fuhrer T., Cappadona S., Sánchez-Díaz N.C. et al. //Molecular Systems Biology. 2014. V. 10. P. 762. https://doi.org/10.15252/msb.20145227
- Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd. ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1989. 1625 p.
- Thomason L.C., Costantino N., Court D.L. //CP Molecular Biology. 2007. V. 79. https://doi.org/10.1002/0471142727.mb0117s79
- Datsenko K.A., Wanner B.L. //Proc. Natl. Acad. Sci. USA. 2000. V. 97. P. 6640–6645.
- Lamed R., Zeikus J.G. // J Bacteriol. 1980. V. 141. P. 1251–1257.
- Laemmli U.K. //Nature. 1970. V. 227. P. 680–685.
- Song L., Wang G., Malhotra A., Deutscher M.P., Liang W. // Nucleic Acids Res. 2016. V. 44. P. 1979–1988.
- Wittig I., Karas M., Schägger H. // Molecular & Cellular Proteomics. 2007. V. 6. P. 1215–1225.
- Zhou X., Zheng W., Li Y., Pearce R., Zhang C., Bell E.W. et al. // Nat Protoc. 2022. V. 17. № 10. P. 2326–2353.
- Brooks B.R., Bruccoleri R.E., Olafson B.D., States D.J., Swaminathan S., Karplus M. // J. Comput. Chem. 1983. V. 4. P. 187–217.
- Bikadi Z., Hazai E. // J. Cheminform. 2009. V. 1. P. 15. https://doi.org/10.1186/1758-2946-1-15
- Halgren T.A. // Encyclopedia of Computational Chemistry. UK: John Wiley & Sons, 2002. https://doi.org/10.1002/0470845015.cma012m
- Xia L., Kong X., Song H., Han Q., Zhang S. // Plant Communications. 2022. V. 3. P. 100266. https://doi.org/10.1016/j.xplc.2021.100266
- Okanishi H., Kim K., Masui R., Kuramitsu S. // J. Proteome Res. 2013. V. 12. P. 3952–3968.
- Smith K., Shen F., Lee H.J., Chandrasekaran S. // iScience. 2022. V. 25. P. 103730. https://doi.org/10.1016/j.isci.2021.103730
- Ketema E.B., Lopaschuk G.D. // Front. Cardiovasc. Med. 2021. V. 8. P. 723996. https://doi.org/10.3389/fcvm.2021.723996
- Li T., Liu M., Feng X., Wang Z., Das I., Xu Y. et al. // J. Biol. Chem. 2014. V. 289. P. 3775–3785.
- Ventura M., Mateo F., Serratosa J., Salaet I., Carujo S., Bachs O. et al. // Int. J. Biochem. Cell Biol. 2010. V. 42. P. 1672–1680.
- Zhang H., Zhao Y., Zhou D.X. // Nucleic Acids Research. 2017. V. 45. P. 12241–12255.
- Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K.A. et al. // Molecular Systems Biology. 2006. V. 2. P. 2006. https://doi.org/10.1038/msb4100050
- Crooks G.E., Hon G., Chandonia J.-M., Brenner S.E. // Genome Res. 2004. V. 14. P. 1188–1190.
Supplementary files
