Comparison of HydSl Hydrogenase of Thiocapsa bogorovii and its Modification with Truncated C-terminus of HydS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Native HydSL hydrogenase of Thiocapsa bogorovii and its modification with truncated C-terminus of HydS (delta54HydS) were shown to be similar in specific activity, thermostability and temperature dependence of activity. It supports the suggestion that C-terminus of HydS does not participate in stabilization of the enzyme structure. Ag+ ions irreversibly inactivated both hydrogenases but delta54HydS was more sensitive to this inhibitor. In the presence of Ag+ the absorption peak at 410 nm was bleached indicating the destruction of FeS clusters. Protein globule was also destructed by Ag+. Prolonged incubation of hydrogenase with Ag+ ions led to disappearance of CO and CN peaks in IR spectra indicating NiFe center impairment. Data suggest that the first target of Ag+ ions is distal FeS cluster, and C-terminus of HydS interacts with Ag+ decreasing local ion concentration near the distal FeS cluster.

About the authors

A. S. Starodubov

Institute of Basic Biological Problems of the Russian Academy of Sciences

Author for correspondence.
Email: alexkex3@mail.ru
Russia, 142290, Moscow region, Pushchino

M. K. Khasimov

Institute of Basic Biological Problems of the Russian Academy of Sciences

Email: alexkex3@mail.ru
Russia, 142290, Moscow region, Pushchino

A. N. Khusnutdinova

Institute of Basic Biological Problems of the Russian Academy of Sciences

Email: alexkex3@mail.ru
Russia, 142290, Moscow region, Pushchino

N. A. Zorin

Institute of Basic Biological Problems of the Russian Academy of Sciences

Email: alexkex3@mail.ru
Russia, 142290, Moscow region, Pushchino

A. A. Tsygankov

Institute of Basic Biological Problems of the Russian Academy of Sciences

Email: alexkex3@mail.ru
Russia, 142290, Moscow region, Pushchino

References

  1. Vignais P., Billoud B. // Chem. Rev. 2007. V. 107. P. 4206–4272.
  2. Greening C., Biswas A., Carere C.R., Jackson C.J., Taylor M.C., Stott M.B., Cook G.M., Morales S.E. // Isme J. 2016. V. 10. № 3. P. 761–777.
  3. Турова Т.П., Кеппен О.И., Ковалева О.Л., Слободова Н.В., Берг И.A., Ивановский Р.Н. // Микробиология 2009. Т. 78. С. 339–349.
  4. Гоготов И.Н., Зорин Н.А., Кондратьева Е.Н. // Биохимия 1976. Т. 41. № 5. С. 836–841.
  5. Khasimov M.K., Petushkova E.P., Khusnutdinova A.N., Zorin N.A., Batyrova K.A., Yakunin A.F., Tsygankov A.A. // Biochim. Biophys. Acta Bioenerg. 2021. V. 1862. № 12. P. 148492.
  6. Rakhely G., Colbeau A., Garin J., Vignais P.M., Kovacs K.L. // J. Bacteriol. 1998. V. 180. № 6. P. 1460–1465.
  7. Богоров Л.В. // Микробиология. 1974. Т. 43. № 2. С. 326–330.
  8. Зорин Н.А., Стародубов А.С., Цыганков А.А. // Прикл. биохимия и микробиология. 2020. V. 56. № 2. С. 135–140.
  9. Zorin N.A., Zabelin A.A., Shkuropatov A.Y., Tsygankov A.A. // J. Inorganic Biochemistry. 2017. V. 177. P. 190–197.
  10. Gruen L.C. // Biochim. Biophys. Acta. 1975. V. 386. № 1. P. 270–274.
  11. Betts H.D., Whitehead C., Harris H.H. // Metallomics. 2021. V. 13. № 1. P. 1–12.
  12. Martic M., Jakab-Simon I.N., Haahr L.T., Hagen W.R., Christensen H.E. // J. Biol. Inorg. Chem. 2013. V. 18. № 2. P. 261–276.
  13. Диксон М., Уэбб Э. Ферменты 2. / Ред. Л.М. Гинодман, М.И. Левянт, В.К. Антонова, А.Е. Браунштейн. М.: Мир, 1998. 530 с.
  14. Abdullatypov A.V., Tsygankov A.A. // Photosynthesis Research. 2015. V. 125. № 1–2. P. 341–353.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (58KB)
3.

Download (51KB)
4.

Download (126KB)
5.

Download (134KB)
6.

Download (50KB)

Copyright (c) 2023 А.С. Стародубов, М.Х. Хасимов, А.Н. Хустнутдинова, Н.А. Зорин, А.А. Цыганков