Heat Shock Proteins in Сancer Diagnostics
- Authors: Guliy O.I.1, Staroverov S.A.1,2, Dykman L.A.1
-
Affiliations:
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences
- Saratov State Vavilov Agrarian University
- Issue: Vol 59, No 4 (2023)
- Pages: 323-336
- Section: Articles
- URL: https://cardiosomatics.ru/0555-1099/article/view/674606
- DOI: https://doi.org/10.31857/S0555109923040062
- EDN: https://elibrary.ru/QZBTFA
- ID: 674606
Cite item
Abstract
With the growing number of cancers, new assistive tools are required to obtain extensive molecular profiles of patients to help identify the disease. Early diagnosis of cancer is based on the analysis of relevant biomarkers, which can be used to monitor the population in order to identify the disease until it can be determined using standard methods and is not clinically manifest. One of the potential markers of cancer is heat shock proteins that act as molecular chaperones. Changes in heat shock proteins expression can serve as an important diagnostic marker of the cell’s response to damage. The paper presents a brief overview of the prevalence of oncological diseases in the world, the need of early oncological diagnostics development, as well as the prospects for the use of heat shock proteins in making an oncological diagnosis.
About the authors
O. I. Guliy
Institute of Biochemistry and Physiology of Plants and Microorganisms,Saratov Scientific Centre of the Russian Academy of Sciences
Author for correspondence.
Email: guliy_olga@mail.ru
Russia, 410049, Saratov
S. A. Staroverov
Institute of Biochemistry and Physiology of Plants and Microorganisms,Saratov Scientific Centre of the Russian Academy of Sciences; Saratov State Vavilov Agrarian University
Email: guliy_olga@mail.ru
Russia, 410049, Saratov; Russia, 410012, Saratov
L. A. Dykman
Institute of Biochemistry and Physiology of Plants and Microorganisms,Saratov Scientific Centre of the Russian Academy of Sciences
Email: guliy_olga@mail.ru
Russia, 410049, Saratov
References
- Thenrajan T., Wilson J. // Biosens. Bioelectron: X. 2022. V. 12. 100232. https://doi.org/10.1016/j.biosx.2022.100232
- Шевцов М.А., Хачатрян В.А., Маргулис Б.А. // Современная онкология. 2012. Т. 14. № 1. С. 63–68.
- Ferlay J., Colombet M., Soerjomataram I., Mathers C., Parkin D.M., Piñeros M., Znaor A., Bray F. // Int. J Cancer. 2019. V. 144. № 8. P. 1941–1953.
- Cui F., Zhou Z., Zhou H.S. // J. Electrochem. Soc. 2020. V. 167. № 3. 037525. doi.org/.https://doi.org/10.1149/2.0252003JES
- Crosby D., Bhatia S., Brindle K.M., Coussens L.M., Dive C., Emberton M. et al. // Science. 2022. V. 375. eaay9040. https://doi.org/10.1126/science.aay9040
- Malecka K., Mikuła E., Ferapontova E.E. // Sensors. 2021. V. 21. № 3. P. 736. https://doi.org/10.3390/s21030736
- Anzar N., Hasan M.R., Akram M., Yadav N., Narang J. // Process Biochem. 2020. V. 94. P. 126–135.
- Kuswandi B., Hidayat M.A., Noviana E. // Biosens. Bioelectron. X. 2022. V. 12. 100246. https://doi.org/10.1016/j.biosx.2022.100246
- Hawkes N. // BMJ. 2019. V. 364. l408. https://doi.org/10.1136/bmj.l408
- Brenner H., Schrotz-King P., Holleczek B., Katalinic A., Hoffmeister M. // Dtsch. Arztebl. Int. 2016. V. 113. № 7. P. 101–116. https://doi.org/10.3238/arztebl.2016.0101
- Kraywinkel K., Buttmann-Schweiger N., Benjamin B. // Gesundheitswesen. 2017. V. 79. № 8–9. P. 184.
- Goyal L., Hingmire S., Parikh P.M. // Med. J. Armed Forces India. 2006. V. 62. № 2. P. 162–168.
- Pulumati A., Pulumati A., Dwarakanath B.S., Verma A., Papineni R.V.L. // Cancer Rep. 2023. V. 6. e1764. https://doi.org/10.1002/cnr2.1764
- Franier B., Thompson M. // Biosens. Bioelectron. 2019. V. 135. P. 71–81.
- Первый В.С., Сухой В.Ф. Онкомаркеры. Клинико-диагностический справочник. Ростов-на-Дону: Феникс, 2012. 128 с.
- Абелев Г.И. // Иммунология. 1994. № 3. С. 4–9.
- Predictive Biomarkers in Oncology. / Eds. S. Badve, G.L. Kumar. Cham: Springer Nature, 2019. 642 p.
- Cao D.-L., Yao X.-D. // Chin. J. Cancer. 2010. V. 29. № 2. P. 229–233.
- Dykman L.A., Staroverov S.A., Fomin A.S., Panfilova E.V., Shirokov A.A., Bucharskaya A.B., Maslyakova G.N., Khlebtsov N.G. // Gold Bull. 2016. V. 49. № 3–4. P. 87–94.
- Madu C.O., Lu Y. // J. Cancer. 2010. V. 1. P. 150–177.
- Kimm M.A., Shevtsov M., Werner C., Sievert W., Zhiyuan W., Schoppe O. et al. // Cancers. 2020. V. 12. P. 1331. https://doi.org/10.3390/cancers12051331
- Werner C., Stangl S., Salvermoser L., Schwab M., Shevtsov M., Xanthopoulos A. et al. // Cancers. 2021. V. 13. 3706. https://doi.org/10.3390/cancers13153706
- Cavallaro S., Horak J., Hååg P., Gupta D., Stiller C., Sahu S.S. et al. // ACS Sens. 2019. V. 4. № 5. P. 1399–1408.
- Baghbaderani S.S., Mokarian P., Moazzam P. // Curr. Anal. Chem. 2022. V. 1. P. 63–78.
- Mahato K., Prasad A., Maurya P.K., Chandra P. // J. Anal. Bioanal. Tech. 2016. V. 7. № 2. e125. https://doi.org/10.4172/2155-9872.1000e125
- Mahato K., Maurya P.K., Chandra P. // 3 Biotech. 2018. V. 8. P. 149. https://doi.org/10.1007/s13205-018-1148-8
- Nanobiosensors for Personalized and Onsite Biomedical Diagnosis. / Ed. P. Chandra. Stevenage: IET, 2016. 640 p.
- Purohit B., Vernekar P.R., Shetti N.P., Chandra P. // Sens. Int. 2020. V. 1. 100040. https://doi.org/10.1016/j.sintl.2020.100040
- Kaczor-Urbanowicz K.E., Martín Carreras-Presas C., Kaczor T., Tu M., Wei F., Garcia-Godoy F., Wong D.T. // J. Cell Mol. Med. 2017. V. 21. № 4. P. 640‒647.
- Nagler R., Bahar G., Shpitzer T., Feinmesser R. // Clin. Cancer Res. 2006. V. 12. № 13. P. 3979–3984.
- Lindquist S., Craig E.A. // Annu. Rev. Genet. 1988. V. 22. P. 631–677.
- Richter K., Haslbeck M., Buchner J. // Mol. Cell. 2010. V. 40. № 2. P. 253–266.
- Guisbert E., Herman C., Lu C.Z., Gross C.A. // Genes Dev. 2004. V. 18. № 22. P. 2812–2821.
- Herman C., Gross C.A. In: Encyclopedia of Microbiology. / Ed. J. Lederberg. N.Y.: Acad. Press, 2000. P. 598–606.
- Morimoto R.I., Tissieres A., Georgopoulous C. In: The Biology of Heat Shock Proteins and Molecular Chaperones. / Eds. R.I. Morimoto, A. Tissieres, C. Georgopoulous. Cold Spring Harbor: Laboratory Press, 1994. P. 1–30.
- Whitley D., Goldberg S.P., Jordan W.D. // J. Vasc. Surg. 1999. V. 29. № 4. P. 748–751.
- Ellis J. // Nature. 1987. V. 328. № 6129. P. 378–379.
- Shemesh N., Jubran J., Dror S., Simonovsky E., Basha O., Argov C. et al. // Nat. Commun. 2021. V. 12. 2180. https://doi.org/10.1038/s41467-021-22369-9
- Craig E., Yan W., James P. In: Molecular Chaperones and Folding. Catalysts, Ed. B. Bukau. Amsterdam: Harwood Academic Publishers, 1999. P. 139–162.
- Bascos N.A.D., Landry S.J. // Int. J. Mol. Sci. 2019. V. 20. 6195. https://doi.org/10.3390/ijms20246195
- Lindner R.A., Treweek T.M., Carver J.A. // Biochem. J. 2001. V. 354. P. 79–87.
- Kampinga H.H., Hageman J., Vos M.J., Kubota H., Tanguay R.M., Bruford Elspeth A. et al. // Cell Stress Chaperones. 2009. V. 14. № 1. P. 105–111.
- Максимович Н.Е., Бонь Е.И. // Биомедицина. 2020. Т. 16. № 2. С. 60–67.
- Rani S., Srivastava A., Kumar M., Goel M. // FEMS Microbiol. Lett. 2016. V. 363. № 6. fnw030. https://doi.org/10.1093/femsle/fnw030
- Azad A.A., Zoubeidi A., Gleave M.E., Chi K.N. // Nat. Rev. Urol. 2015. V. 12. № 1. P. 26–36.
- Akerfelt M., Morimoto R.I., Sistonen L. // Nat. Rev. Mol. Cell Biol. 2010. V. 11. P.545–555.
- Schlesinger M.J. // J. Biol. Chem. 1990. V. 265. № 21. P. 12111–12224.
- Haslbeck M., Franzmann T., Weinfurtner D., Buchner J. // Nat. Struct. Mol. Biol. 2005. V. 12. № 10. P. 842–846.
- Hristozova N., Tompa P., Kovacs D. // PLoS One. 2016. V. 11. № 8. e0161970. https://doi.org/10.1371/journal.pone.0161970
- Muchowski P.J. // Neuron. 2002. V. 35. № 1. P. 9–12.
- Barral J.M., Broadley S.A., Schaffar G., Hartl F.U. // Semin. Cell Dev. Biol. 2004. V. 15. № 1. P. 17–29.
- Liu Z., Xi D., Kang M., Guo X., Xu B. // Cell Stress Chaperones. 2012. V. 17. P. 539–551.
- Tkáčová J., Angelovičová M. // J. Anim. Sci. Biotechnol. 2012. V. 45. P. 349–353.
- Mathew A., Morimoto R.I. // Ann. N. Y. Acad. Scie. 1998. V. 851. P. 99–111.
- Rappa F., Farina F., Zummo G., David S., Campanella C., Carini F. et al. // Anticancer Res. 2012. V. 32. P. 5139–5150.
- Rizzo M., Cappello F., Marfil R., Nibali L., Marino Gammazza A., Rappa F. et al. // Cell Stress Chaperones. 2012. V. 17. P. 399–407.
- Liyanagamage D.S.N.K., Martinus R.D. // Mediators Inflamm. 2020. V. 2020. 8073516. https://doi.org/10.1155/2020/8073516
- Gunther S., Ostheimer C., Stang S., Specht H.M., Mozes P., Jesinghaus M. et al. // Front. Immunol. 2015. V. 6. P. 556. https://doi.org/10.3389/fimmu.2015.00556
- Breuninger S., Erl J., Knape C., Gunther S., Regel I., Rödel F. et al. // J. Clin. Cell Immunol. 2014. V. 5. № 5. P. 264. https://doi.org/10.4172/2155-9899.1000264
- Bayer C., Liebhardt M.E., Schmid T.E., Trajkovic-Arsic M., Hube K., Specht H.M., Schilling D. et al. // Int. J. Radiat. Oncol. Biol. Phys. 2014. V. 88. № 3. P. 694–700.
- Hurwitz M.D., Kaur P., Nagaraja G.M., Bausero M.A., Manola J., Asea A. // Radiother. Oncol. 2010. V. 95. № 3. P. 350–358.
- Abe M., Manola J.B., Oh W.K., Parslow D.L., George D.J., Austin C.L., Kantoff P.W. // Clin. Prostate Cancer. 2004. V. 3. № 1. P. 49–53.
- Takashima M., Kuramitsu Y., Yokoyama Y., Iizuka N., Toda T., Sakaida I. et al. // Proteomics. 2003. V. 3. № 12. P. 2487–2493.
- Feng J.T., Liu Y.K., Song H.Y., Dai Z., Qin L.X., Almofti M.R. et al. // Proteomics. 2005. V. 5. № 17. P. 4581–4588.
- Fujita Y., Nakanishi T., Miyamoto Y., Hiramatsu M., Mabuchi H., Miyamoto A. et al. // Cancer Lett. 2008. V. 263. № 2. P. 280–290.
- Syrigos K.N., Harrington K.J., Karayiannakis A.J., Sekara E., Chatziyianni E., Syrigou E.I., Waxman J. // Urology. 2003. V. 61. № 3. P. 677–680.
- Pick E., Kluger Y., Giltnane J.M., Moeder C., Camp R.L., Rimm D.L., Kluger H.M. // Cancer Res. 2007. V. 67. № 7. P. 2932–2937.
- Santiago-O’Farrill J.M., Kleinerman E.S., Hollomon M.G., Livingston A., Wang W.L., Tsai J.W., Gordon N.B. // Oncotarget. 2017. V. 9. № 2. P. 1602–1616.
- Zhu Y., Tian Q., Qiao N., Cheng Y., Li H. // Eur. J. Gynaecol. Oncol. 2014. V. 36. № 4. P. 394–396.
- Ge H., Yan Y., Guo L., Tian F., Wu D. // Onco Targets Ther. 2018. V. 11. P. 351–359.
- Rappa F., Pitruzzella A., Marino Gammazza A., Barone R., Mocciaro E., Tomasello G. et al. // Cell Stress Chaperones. 2016. V. 21. № 5. P. 927–933.
- Jolly C., Morimoto R.I. // J. Natl. Cancer Inst. 2000. V. 92. № 19. P. 1564–1572.
- Hoang A.T., Huang J., Rudra-Ganguly N., Zheng J., Powell W.C., Rabindran S.K. et al. // Am. J. Pathol. 2000. V. 156. № 3. P. 857–864.
- Cornford P.A., Dodson A.R., Parsons K.F., Desmond A.D., Woolfenden A., Fordham M. et al. // Cancer Res. 2000. V. 60. № 24. P. 7099–7105.
- van’t Veer L.J., Dai H., van de Vijver M.J., He Y.D., Hart A.A., Mao M. et al. // Nature. 2002. V. 415. № 6871. P. 530–536.
- Ciocca D.R., Calderwood S.K. // Cell Stress Chaperones. 2005. V. 10. P. 86–103.
- Shi L., Chevolot Y., Souteyrand E., Laurenceau E. // Cancer Biomark. 2017. V. 18. № 2. P. 105–116.
- Zaher E.R., Hemida M.A., El-Hashash M.M., El-Sheridy H.G. // J. Cancer Res. Treat. 2018. V. 6. № 2. P. 47–53.
- Yang S., Xiao H., Cao L. // Biomed. Pharmacother. 2021. V. 142. 112074. https://doi.org/10.1016/j.biopha.2021.112074
- Qokoyi N.K., Masamba P., Munsamy G., Kappo A.P. // Lett. Drug Des. Discov. 2021. V. 18. P. 650–665.
- Ischia J., So A.I. // Nat. Rev. Urol. 2013. V. 10. P. 386–395.
- Di Tommaso L., Franchi G., Park Y.N., Fiamengo B., Destro A., Morenghi E. et al. // Hepatology. 2007. V. 45. P. 725–734.
- Witkin S.S. // Eur. J. Gynaecol. Oncol. 2001. V. 22. P. 249–256.
- Albakova Z., Norinho D.D., Mangasarova Y., Sapozhnikov A. // Front. Med. 2021. V. 88. 743476. https://doi.org/10.3389/fmed.2021.743476
- Chen R., Chen S., Liao J., Chen X., Xu X. // Am. J. Transl. Res. 2016. V. 8. P. 1763–1768.
- Arrigo A.P., Paul C., Ducasse C., Manero F., Kretz-Remy C., Virot S. et al. // Prog. Mol. Subcel. Biol. 2002. V. 28. P. 185–204.
- Ciocca D.R., Rozados V.R., Cuello-Carrio F.D., Gervasoni, S.I., Matar, P., Scharovsky O.G. // Cell Stress Chaperones. 2003. V. 8. № 1. P. 26–36.
- Shevtsov M., Multhoff G. // Front. Immunol. 2016. V. 7. 171. https://doi.org/10.3389/fimmu.2016.00171
- Murshid A., Gong J., Stevenson M.A., Calderwood S.K. // Expert Rev Vaccines. 2011. V. 10. № 11. P. 1553–1568.
- Троицкая О.С., Новак Д.Д., Рихтер В.А., Коваль О.А. // Acta Naturae. 2022. Т. 14. № 1. С. 40–53.
- Multhoff G., Pfister K., Gehrmann M., Hantschel M., Gross C., Hafner M., Hiddemann W. // Cell Stress Chaperones. 2001. V. 6. P. 337–344.
- Basu S., Srivastava P.K. // Cell Stress Chaperones. 2000. V. 5. P. 443–451.
- Tsan M.F., Gao B. // Am. J. Physiol. Cell Physiol. 2004. V. 286. P. C739–C744.
- Mazzaferro V., Coppa J., Carrabba M.G., Rivoltini L., Schiavo M., Regalia E. et al. // Clin. Cancer Res. 2003. V. 9. P. 3235–3245.
- Pilla L., Patuzzo R., Rivoltini L., Maio M., Pennacchioli E., Lamaj E. et al. // Cancer Immunol. Immunother. 2006. V. 55. P. 958–968.
- Maki R.G., Livingston P.O., Lewis J.J., Janetzki S., Klimstra D., Desantis D., Srivastava P.K., Brennan M.F. // Dig. Dis. Sci. 2007. V. 52. P. 1964–1972.
- Bolhassani A., Rafati S. // Expert Rev. Vaccines. 2008. V. 7. № 8. P. 1185–1199.
- Shevtsov M.A., Nikolaev B.P., Yakovleva L.Y., Parr M.A., Marchenko Y.Y., Eliseev I. et al. // J. Control. Release. 2016. V. 220. P. 329–340.
- Testori A., Richards J., Whitman E., Mann G.B., Lutzky J., Camacho L. et al. // J. Clin. Oncol. 2008. V. 26. P. 955–962.
- Ampie L., Choy W., Lamano J.B., Fakurnejad S., Bloch O., Parsa A.T. // J. Neurooncol. 2015. V. 123. P. 441–448.
- Dykman L.A., Staroverov S.A., Kozlov S.V., Fomin A.S., Chumakov D.S., Gabalov K.P. et al. // Int. J. Mol. Sci. 2022. V. 23. № 22. 14313. https://doi.org/10.3390/ijms232214313
- Das J.K., Xiong X., Ren X., Yang J.-M., Song J. // J. Oncol. 2019. V. 2019. 3267207. https://doi.org/10.1155/2019/3267207
- Hu C., Yang J., Qi Z., Wu H., Wang B., Zou F., Mei H., Liu J., Wang W., Liu Q. // MedComm. 2022. V. 3. № 3. e161. https://doi.org/10.1002/mco2.161
- Деев С.М., Лебеденко Е.Н. // Биоорганическая химия. 2015. Т. 41. № 5. С. 539–552.
- Dykman L.A., Khlebtsov N.G. // Biomaterials. 2016. V. 108. P. 13–34.
- Odion R.A., Liu Y., Vo-Dinh T. // Cancers. 2022. V. 14. 5737. https://doi.org/10.3390/cancers14235737
- Albakova Z., Siam M.K.S., Sacitharan P.K., Ziganshin R.H., Ryazantsev D.Y., Sapozhnikov A.M. // Transl. Oncol. 2021. V. 14. 100995. https://doi.org/10.1016/j.tranon.2020.100995
- Regimbeau M., Abrey J., Vautrot V., Causse S., Gobbo J., Garrido C. // Semin. Cancer Biol. 2022. V. 86. P. 46–57.
- Wang L., Xu W., Wang B., Si X., Li S. // Processes. 2023. V. 11. 403. https://doi.org/10.3390/pr11020403
- Khalil A.A., Kabapy N.F., Deraz S.F., Smith C. // Biochim. Biophys. Acta – Rev. Cancer. 2011. V. 1816. P. 89–104.
- Staroverov S.A., Kozlov S.V., Brovko F.A., Fursova K.K., Shardin V.V., Fomin A.S. et al. // Biosens Bioelectron: X. 2022. V. 11. 100211. .https://doi.org/10.1016/j.biosx.2022.100211
- Guliy O.I., Evstigneeva S.S., Dykman L.A. // Biosens Bioelectron. 2023. V. 222. 114909. https://doi.org/10.1016/j.bios.2022.114909
- Дон Е.С., Тарасов А.В., Эпштейн О.И., Тарасов С.А. // Клиническая лабораторная диагностика. 2017. Т. 62. С. 52–59.
Supplementary files
