Heat Shock Proteins in Сancer Diagnostics

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

With the growing number of cancers, new assistive tools are required to obtain extensive molecular profiles of patients to help identify the disease. Early diagnosis of cancer is based on the analysis of relevant biomarkers, which can be used to monitor the population in order to identify the disease until it can be determined using standard methods and is not clinically manifest. One of the potential markers of cancer is heat shock proteins that act as molecular chaperones. Changes in heat shock proteins expression can serve as an important diagnostic marker of the cell’s response to damage. The paper presents a brief overview of the prevalence of oncological diseases in the world, the need of early oncological diagnostics development, as well as the prospects for the use of heat shock proteins in making an oncological diagnosis.

Sobre autores

O. Guliy

Institute of Biochemistry and Physiology of Plants and Microorganisms,
Saratov Scientific Centre of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: guliy_olga@mail.ru
Russia, 410049, Saratov

S. Staroverov

Institute of Biochemistry and Physiology of Plants and Microorganisms,
Saratov Scientific Centre of the Russian Academy of Sciences; Saratov State Vavilov Agrarian University

Email: guliy_olga@mail.ru
Russia, 410049, Saratov; Russia, 410012, Saratov

L. Dykman

Institute of Biochemistry and Physiology of Plants and Microorganisms,
Saratov Scientific Centre of the Russian Academy of Sciences

Email: guliy_olga@mail.ru
Russia, 410049, Saratov

Bibliografia

  1. Thenrajan T., Wilson J. // Biosens. Bioelectron: X. 2022. V. 12. 100232. https://doi.org/10.1016/j.biosx.2022.100232
  2. Шевцов М.А., Хачатрян В.А., Маргулис Б.А. // Современная онкология. 2012. Т. 14. № 1. С. 63–68.
  3. Ferlay J., Colombet M., Soerjomataram I., Mathers C., Parkin D.M., Piñeros M., Znaor A., Bray F. // Int. J Cancer. 2019. V. 144. № 8. P. 1941–1953.
  4. Cui F., Zhou Z., Zhou H.S. // J. Electrochem. Soc. 2020. V. 167. № 3. 037525. doi.org/.https://doi.org/10.1149/2.0252003JES
  5. Crosby D., Bhatia S., Brindle K.M., Coussens L.M., Dive C., Emberton M. et al. // Science. 2022. V. 375. eaay9040. https://doi.org/10.1126/science.aay9040
  6. Malecka K., Mikuła E., Ferapontova E.E. // Sensors. 2021. V. 21. № 3. P. 736. https://doi.org/10.3390/s21030736
  7. Anzar N., Hasan M.R., Akram M., Yadav N., Narang J. // Process Biochem. 2020. V. 94. P. 126–135.
  8. Kuswandi B., Hidayat M.A., Noviana E. // Biosens. Bioelectron. X. 2022. V. 12. 100246. https://doi.org/10.1016/j.biosx.2022.100246
  9. Hawkes N. // BMJ. 2019. V. 364. l408. https://doi.org/10.1136/bmj.l408
  10. Brenner H., Schrotz-King P., Holleczek B., Katalinic A., Hoffmeister M. // Dtsch. Arztebl. Int. 2016. V. 113. № 7. P. 101–116. https://doi.org/10.3238/arztebl.2016.0101
  11. Kraywinkel K., Buttmann-Schweiger N., Benjamin B. // Gesundheitswesen. 2017. V. 79. № 8–9. P. 184.
  12. Goyal L., Hingmire S., Parikh P.M. // Med. J. Armed Forces India. 2006. V. 62. № 2. P. 162–168.
  13. Pulumati A., Pulumati A., Dwarakanath B.S., Verma A., Papineni R.V.L. // Cancer Rep. 2023. V. 6. e1764. https://doi.org/10.1002/cnr2.1764
  14. Franier B., Thompson M. // Biosens. Bioelectron. 2019. V. 135. P. 71–81.
  15. Первый В.С., Сухой В.Ф. Онкомаркеры. Клинико-диагностический справочник. Ростов-на-Дону: Феникс, 2012. 128 с.
  16. Абелев Г.И. // Иммунология. 1994. № 3. С. 4–9.
  17. Predictive Biomarkers in Oncology. / Eds. S. Badve, G.L. Kumar. Cham: Springer Nature, 2019. 642 p.
  18. Cao D.-L., Yao X.-D. // Chin. J. Cancer. 2010. V. 29. № 2. P. 229–233.
  19. Dykman L.A., Staroverov S.A., Fomin A.S., Panfilova E.V., Shirokov A.A., Bucharskaya A.B., Maslyakova G.N., Khlebtsov N.G. // Gold Bull. 2016. V. 49. № 3–4. P. 87–94.
  20. Madu C.O., Lu Y. // J. Cancer. 2010. V. 1. P. 150–177.
  21. Kimm M.A., Shevtsov M., Werner C., Sievert W., Zhiyuan W., Schoppe O. et al. // Cancers. 2020. V. 12. P. 1331. https://doi.org/10.3390/cancers12051331
  22. Werner C., Stangl S., Salvermoser L., Schwab M., Shevtsov M., Xanthopoulos A. et al. // Cancers. 2021. V. 13. 3706. https://doi.org/10.3390/cancers13153706
  23. Cavallaro S., Horak J., Hååg P., Gupta D., Stiller C., Sahu S.S. et al. // ACS Sens. 2019. V. 4. № 5. P. 1399–1408.
  24. Baghbaderani S.S., Mokarian P., Moazzam P. // Curr. Anal. Chem. 2022. V. 1. P. 63–78.
  25. Mahato K., Prasad A., Maurya P.K., Chandra P. // J. Anal. Bioanal. Tech. 2016. V. 7. № 2. e125. https://doi.org/10.4172/2155-9872.1000e125
  26. Mahato K., Maurya P.K., Chandra P. // 3 Biotech. 2018. V. 8. P. 149. https://doi.org/10.1007/s13205-018-1148-8
  27. Nanobiosensors for Personalized and Onsite Biomedical Diagnosis. / Ed. P. Chandra. Stevenage: IET, 2016. 640 p.
  28. Purohit B., Vernekar P.R., Shetti N.P., Chandra P. // Sens. Int. 2020. V. 1. 100040. https://doi.org/10.1016/j.sintl.2020.100040
  29. Kaczor-Urbanowicz K.E., Martín Carreras-Presas C., Kaczor T., Tu M., Wei F., Garcia-Godoy F., Wong D.T. // J. Cell Mol. Med. 2017. V. 21. № 4. P. 640‒647.
  30. Nagler R., Bahar G., Shpitzer T., Feinmesser R. // Clin. Cancer Res. 2006. V. 12. № 13. P. 3979–3984.
  31. Lindquist S., Craig E.A. // Annu. Rev. Genet. 1988. V. 22. P. 631–677.
  32. Richter K., Haslbeck M., Buchner J. // Mol. Cell. 2010. V. 40. № 2. P. 253–266.
  33. Guisbert E., Herman C., Lu C.Z., Gross C.A. // Genes Dev. 2004. V. 18. № 22. P. 2812–2821.
  34. Herman C., Gross C.A. In: Encyclopedia of Microbiology. / Ed. J. Lederberg. N.Y.: Acad. Press, 2000. P. 598–606.
  35. Morimoto R.I., Tissieres A., Georgopoulous C. In: The Biology of Heat Shock Proteins and Molecular Chaperones. / Eds. R.I. Morimoto, A. Tissieres, C. Georgopoulous. Cold Spring Harbor: Laboratory Press, 1994. P. 1–30.
  36. Whitley D., Goldberg S.P., Jordan W.D. // J. Vasc. Surg. 1999. V. 29. № 4. P. 748–751.
  37. Ellis J. // Nature. 1987. V. 328. № 6129. P. 378–379.
  38. Shemesh N., Jubran J., Dror S., Simonovsky E., Basha O., Argov C. et al. // Nat. Commun. 2021. V. 12. 2180. https://doi.org/10.1038/s41467-021-22369-9
  39. Craig E., Yan W., James P. In: Molecular Chaperones and Folding. Catalysts, Ed. B. Bukau. Amsterdam: Harwood Academic Publishers, 1999. P. 139–162.
  40. Bascos N.A.D., Landry S.J. // Int. J. Mol. Sci. 2019. V. 20. 6195. https://doi.org/10.3390/ijms20246195
  41. Lindner R.A., Treweek T.M., Carver J.A. // Biochem. J. 2001. V. 354. P. 79–87.
  42. Kampinga H.H., Hageman J., Vos M.J., Kubota H., Tanguay R.M., Bruford Elspeth A. et al. // Cell Stress Chaperones. 2009. V. 14. № 1. P. 105–111.
  43. Максимович Н.Е., Бонь Е.И. // Биомедицина. 2020. Т. 16. № 2. С. 60–67.
  44. Rani S., Srivastava A., Kumar M., Goel M. // FEMS Microbiol. Lett. 2016. V. 363. № 6. fnw030. https://doi.org/10.1093/femsle/fnw030
  45. Azad A.A., Zoubeidi A., Gleave M.E., Chi K.N. // Nat. Rev. Urol. 2015. V. 12. № 1. P. 26–36.
  46. Akerfelt M., Morimoto R.I., Sistonen L. // Nat. Rev. Mol. Cell Biol. 2010. V. 11. P.545–555.
  47. Schlesinger M.J. // J. Biol. Chem. 1990. V. 265. № 21. P. 12111–12224.
  48. Haslbeck M., Franzmann T., Weinfurtner D., Buchner J. // Nat. Struct. Mol. Biol. 2005. V. 12. № 10. P. 842–846.
  49. Hristozova N., Tompa P., Kovacs D. // PLoS One. 2016. V. 11. № 8. e0161970. https://doi.org/10.1371/journal.pone.0161970
  50. Muchowski P.J. // Neuron. 2002. V. 35. № 1. P. 9–12.
  51. Barral J.M., Broadley S.A., Schaffar G., Hartl F.U. // Semin. Cell Dev. Biol. 2004. V. 15. № 1. P. 17–29.
  52. Liu Z., Xi D., Kang M., Guo X., Xu B. // Cell Stress Chaperones. 2012. V. 17. P. 539–551.
  53. Tkáčová J., Angelovičová M. // J. Anim. Sci. Biotechnol. 2012. V. 45. P. 349–353.
  54. Mathew A., Morimoto R.I. // Ann. N. Y. Acad. Scie. 1998. V. 851. P. 99–111.
  55. Rappa F., Farina F., Zummo G., David S., Campanella C., Carini F. et al. // Anticancer Res. 2012. V. 32. P. 5139–5150.
  56. Rizzo M., Cappello F., Marfil R., Nibali L., Marino Gammazza A., Rappa F. et al. // Cell Stress Chaperones. 2012. V. 17. P. 399–407.
  57. Liyanagamage D.S.N.K., Martinus R.D. // Mediators Inflamm. 2020. V. 2020. 8073516. https://doi.org/10.1155/2020/8073516
  58. Gunther S., Ostheimer C., Stang S., Specht H.M., Mozes P., Jesinghaus M. et al. // Front. Immunol. 2015. V. 6. P. 556. https://doi.org/10.3389/fimmu.2015.00556
  59. Breuninger S., Erl J., Knape C., Gunther S., Regel I., Rödel F. et al. // J. Clin. Cell Immunol. 2014. V. 5. № 5. P. 264. https://doi.org/10.4172/2155-9899.1000264
  60. Bayer C., Liebhardt M.E., Schmid T.E., Trajkovic-Arsic M., Hube K., Specht H.M., Schilling D. et al. // Int. J. Radiat. Oncol. Biol. Phys. 2014. V. 88. № 3. P. 694–700.
  61. Hurwitz M.D., Kaur P., Nagaraja G.M., Bausero M.A., Manola J., Asea A. // Radiother. Oncol. 2010. V. 95. № 3. P. 350–358.
  62. Abe M., Manola J.B., Oh W.K., Parslow D.L., George D.J., Austin C.L., Kantoff P.W. // Clin. Prostate Cancer. 2004. V. 3. № 1. P. 49–53.
  63. Takashima M., Kuramitsu Y., Yokoyama Y., Iizuka N., Toda T., Sakaida I. et al. // Proteomics. 2003. V. 3. № 12. P. 2487–2493.
  64. Feng J.T., Liu Y.K., Song H.Y., Dai Z., Qin L.X., Almofti M.R. et al. // Proteomics. 2005. V. 5. № 17. P. 4581–4588.
  65. Fujita Y., Nakanishi T., Miyamoto Y., Hiramatsu M., Mabuchi H., Miyamoto A. et al. // Cancer Lett. 2008. V. 263. № 2. P. 280–290.
  66. Syrigos K.N., Harrington K.J., Karayiannakis A.J., Sekara E., Chatziyianni E., Syrigou E.I., Waxman J. // Urology. 2003. V. 61. № 3. P. 677–680.
  67. Pick E., Kluger Y., Giltnane J.M., Moeder C., Camp R.L., Rimm D.L., Kluger H.M. // Cancer Res. 2007. V. 67. № 7. P. 2932–2937.
  68. Santiago-O’Farrill J.M., Kleinerman E.S., Hollomon M.G., Livingston A., Wang W.L., Tsai J.W., Gordon N.B. // Oncotarget. 2017. V. 9. № 2. P. 1602–1616.
  69. Zhu Y., Tian Q., Qiao N., Cheng Y., Li H. // Eur. J. Gynaecol. Oncol. 2014. V. 36. № 4. P. 394–396.
  70. Ge H., Yan Y., Guo L., Tian F., Wu D. // Onco Targets Ther. 2018. V. 11. P. 351–359.
  71. Rappa F., Pitruzzella A., Marino Gammazza A., Barone R., Mocciaro E., Tomasello G. et al. // Cell Stress Chaperones. 2016. V. 21. № 5. P. 927–933.
  72. Jolly C., Morimoto R.I. // J. Natl. Cancer Inst. 2000. V. 92. № 19. P. 1564–1572.
  73. Hoang A.T., Huang J., Rudra-Ganguly N., Zheng J., Powell W.C., Rabindran S.K. et al. // Am. J. Pathol. 2000. V. 156. № 3. P. 857–864.
  74. Cornford P.A., Dodson A.R., Parsons K.F., Desmond A.D., Woolfenden A., Fordham M. et al. // Cancer Res. 2000. V. 60. № 24. P. 7099–7105.
  75. van’t Veer L.J., Dai H., van de Vijver M.J., He Y.D., Hart A.A., Mao M. et al. // Nature. 2002. V. 415. № 6871. P. 530–536.
  76. Ciocca D.R., Calderwood S.K. // Cell Stress Chaperones. 2005. V. 10. P. 86–103.
  77. Shi L., Chevolot Y., Souteyrand E., Laurenceau E. // Cancer Biomark. 2017. V. 18. № 2. P. 105–116.
  78. Zaher E.R., Hemida M.A., El-Hashash M.M., El-Sheridy H.G. // J. Cancer Res. Treat. 2018. V. 6. № 2. P. 47–53.
  79. Yang S., Xiao H., Cao L. // Biomed. Pharmacother. 2021. V. 142. 112074. https://doi.org/10.1016/j.biopha.2021.112074
  80. Qokoyi N.K., Masamba P., Munsamy G., Kappo A.P. // Lett. Drug Des. Discov. 2021. V. 18. P. 650–665.
  81. Ischia J., So A.I. // Nat. Rev. Urol. 2013. V. 10. P. 386–395.
  82. Di Tommaso L., Franchi G., Park Y.N., Fiamengo B., Destro A., Morenghi E. et al. // Hepatology. 2007. V. 45. P. 725–734.
  83. Witkin S.S. // Eur. J. Gynaecol. Oncol. 2001. V. 22. P. 249–256.
  84. Albakova Z., Norinho D.D., Mangasarova Y., Sapozhnikov A. // Front. Med. 2021. V. 88. 743476. https://doi.org/10.3389/fmed.2021.743476
  85. Chen R., Chen S., Liao J., Chen X., Xu X. // Am. J. Transl. Res. 2016. V. 8. P. 1763–1768.
  86. Arrigo A.P., Paul C., Ducasse C., Manero F., Kretz-Remy C., Virot S. et al. // Prog. Mol. Subcel. Biol. 2002. V. 28. P. 185–204.
  87. Ciocca D.R., Rozados V.R., Cuello-Carrio F.D., Gervasoni, S.I., Matar, P., Scharovsky O.G. // Cell Stress Chaperones. 2003. V. 8. № 1. P. 26–36.
  88. Shevtsov M., Multhoff G. // Front. Immunol. 2016. V. 7. 171. https://doi.org/10.3389/fimmu.2016.00171
  89. Murshid A., Gong J., Stevenson M.A., Calderwood S.K. // Expert Rev Vaccines. 2011. V. 10. № 11. P. 1553–1568.
  90. Троицкая О.С., Новак Д.Д., Рихтер В.А., Коваль О.А. // Acta Naturae. 2022. Т. 14. № 1. С. 40–53.
  91. Multhoff G., Pfister K., Gehrmann M., Hantschel M., Gross C., Hafner M., Hiddemann W. // Cell Stress Chaperones. 2001. V. 6. P. 337–344.
  92. Basu S., Srivastava P.K. // Cell Stress Chaperones. 2000. V. 5. P. 443–451.
  93. Tsan M.F., Gao B. // Am. J. Physiol. Cell Physiol. 2004. V. 286. P. C739–C744.
  94. Mazzaferro V., Coppa J., Carrabba M.G., Rivoltini L., Schiavo M., Regalia E. et al. // Clin. Cancer Res. 2003. V. 9. P. 3235–3245.
  95. Pilla L., Patuzzo R., Rivoltini L., Maio M., Pennacchioli E., Lamaj E. et al. // Cancer Immunol. Immunother. 2006. V. 55. P. 958–968.
  96. Maki R.G., Livingston P.O., Lewis J.J., Janetzki S., Klimstra D., Desantis D., Srivastava P.K., Brennan M.F. // Dig. Dis. Sci. 2007. V. 52. P. 1964–1972.
  97. Bolhassani A., Rafati S. // Expert Rev. Vaccines. 2008. V. 7. № 8. P. 1185–1199.
  98. Shevtsov M.A., Nikolaev B.P., Yakovleva L.Y., Parr M.A., Marchenko Y.Y., Eliseev I. et al. // J. Control. Release. 2016. V. 220. P. 329–340.
  99. Testori A., Richards J., Whitman E., Mann G.B., Lutzky J., Camacho L. et al. // J. Clin. Oncol. 2008. V. 26. P. 955–962.
  100. Ampie L., Choy W., Lamano J.B., Fakurnejad S., Bloch O., Parsa A.T. // J. Neurooncol. 2015. V. 123. P. 441–448.
  101. Dykman L.A., Staroverov S.A., Kozlov S.V., Fomin A.S., Chumakov D.S., Gabalov K.P. et al. // Int. J. Mol. Sci. 2022. V. 23. № 22. 14313. https://doi.org/10.3390/ijms232214313
  102. Das J.K., Xiong X., Ren X., Yang J.-M., Song J. // J. Oncol. 2019. V. 2019. 3267207. https://doi.org/10.1155/2019/3267207
  103. Hu C., Yang J., Qi Z., Wu H., Wang B., Zou F., Mei H., Liu J., Wang W., Liu Q. // MedComm. 2022. V. 3. № 3. e161. https://doi.org/10.1002/mco2.161
  104. Деев С.М., Лебеденко Е.Н. // Биоорганическая химия. 2015. Т. 41. № 5. С. 539–552.
  105. Dykman L.A., Khlebtsov N.G. // Biomaterials. 2016. V. 108. P. 13–34.
  106. Odion R.A., Liu Y., Vo-Dinh T. // Cancers. 2022. V. 14. 5737. https://doi.org/10.3390/cancers14235737
  107. Albakova Z., Siam M.K.S., Sacitharan P.K., Ziganshin R.H., Ryazantsev D.Y., Sapozhnikov A.M. // Transl. Oncol. 2021. V. 14. 100995. https://doi.org/10.1016/j.tranon.2020.100995
  108. Regimbeau M., Abrey J., Vautrot V., Causse S., Gobbo J., Garrido C. // Semin. Cancer Biol. 2022. V. 86. P. 46–57.
  109. Wang L., Xu W., Wang B., Si X., Li S. // Processes. 2023. V. 11. 403. https://doi.org/10.3390/pr11020403
  110. Khalil A.A., Kabapy N.F., Deraz S.F., Smith C. // Biochim. Biophys. Acta – Rev. Cancer. 2011. V. 1816. P. 89–104.
  111. Staroverov S.A., Kozlov S.V., Brovko F.A., Fursova K.K., Shardin V.V., Fomin A.S. et al. // Biosens Bioelectron: X. 2022. V. 11. 100211. .https://doi.org/10.1016/j.biosx.2022.100211
  112. Guliy O.I., Evstigneeva S.S., Dykman L.A. // Biosens Bioelectron. 2023. V. 222. 114909. https://doi.org/10.1016/j.bios.2022.114909
  113. Дон Е.С., Тарасов А.В., Эпштейн О.И., Тарасов С.А. // Клиническая лабораторная диагностика. 2017. Т. 62. С. 52–59.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (306KB)
4.

Baixar (981KB)
5.

Baixar (396KB)
6.

Baixar (581KB)

Declaração de direitos autorais © О.И. Гулий, С.А. Староверов, Л.А. Дыкман, 2023