Optimization of Biolistic Transformation Parameters for Nicotiana tabacum

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Biolistics is one of the widely used methods to deliver nucleic acids into plant cells. In this work, we optimized the protocol for biolistic transformation of Nicotiana tabacum with the gene gun PDS-1000/He Biolistic Particle Delivery System. The Green Fluorescent Protein (GFP) gene was used as a marker. The optimal parameters for the transformation of N. tabacum leaf cells were determined as: pressure, 1350 psi; tungsten particle size, 1.3 μm; plasmid DNA purification method, ethanol re-precipitation. The results should be useful for the development of biolistic transformation protocols for plant cells, including application for plant genome editing of agricultural species.

作者简介

A. Davlekamova

Skryabin Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology”
of the Russian Academy of Sciences

Email: timofeeva.bio@gmail.com
Russia, 117312, Moscow

A. Zubritsky

Skryabin Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology”
of the Russian Academy of Sciences

Email: timofeeva.bio@gmail.com
Russia, 117312, Moscow

T. Timofeeva

Skryabin Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology”
of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: timofeeva.bio@gmail.com
Russia, 117312, Moscow

I. Yakovleva

Skryabin Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology”
of the Russian Academy of Sciences

Email: timofeeva.bio@gmail.com
Russia, 117312, Moscow

A. Kamionskaya

Skryabin Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology”
of the Russian Academy of Sciences

Email: timofeeva.bio@gmail.com
Russia, 117312, Moscow

参考

  1. Sanford J.C. // Trends Biotechnol. 1988. V. 6. P. 299–302. https://doi.org/10.1016/0167-7799(88)90023-6
  2. Hansen G., Wright M.S. // Trends Plant Sci. 1999. V. 4. P. 226–231. https://doi.org/10.1016/S1360-1385(99)01412-0
  3. Jain R.K., Jain S., Wang B., Wu R. // Plant Cell Rep. 1996. V. 15. № 12. P. 963–968. https://doi.org/10.1007/BF00231597
  4. Sparks C.A., Jones H.D. // Meth. in Mol. Biol. 2009. V. 478. P. 71–92. https://doi.org/10.1007/978-1-59745-379-0_4
  5. Ismagul A., Yang N., Maltseva E., Iskakova G. // Plant Biol. 2018 V. 18. P. 135–143. https://doi.org/10.1186/s12870-018-1326-1
  6. Zhang J., Du H., Chao M., Yin Z., Yang H., Li Y., Huang F., Yu D. // Front. Plant Sci. 2016. V. 7. P. 628.https://doi.org/10.3389/fpls.2016.00628
  7. Аукенов Н.Е., Масабаева М.Р., Хасанова У.У. // Наука и Здравоохранение. 2014. № 1. С. 51–53.
  8. Gordon-Kamm W.J., Spencer T.M., Mangano M.L., Adams T.R. // The Plant Cell. 1990. V. 2. P. 603–618. https://doi.org/10.1105/tpc.2.7.603
  9. Sanford J.C., Smith F.D., Russell J.A. Meth. in Enzymol. 1993. V. 217. P. 483–509. https://doi.org/10.1016/0076-6879(93)17086-K
  10. Chee M.J.Y., Lycett G.W., Chin C.F. // Electronic J. Biotechnol. 2018. V. 34. 51–58. https://doi.org/10.1016/j.ejbt.2018.05.005

补充文件

附件文件
动作
1. JATS XML
2.

下载 (53KB)
3.

下载 (155KB)
4.

下载 (393KB)

版权所有 © А.А. Давлекамова, А.В. Зубрицкий, Т.А. Тимофеева, И.В. Яковлева, А.М. Камионская, 2023