Optimization of Biolistic Transformation Parameters for Nicotiana tabacum

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Biolistics is one of the widely used methods to deliver nucleic acids into plant cells. In this work, we optimized the protocol for biolistic transformation of Nicotiana tabacum with the gene gun PDS-1000/He Biolistic Particle Delivery System. The Green Fluorescent Protein (GFP) gene was used as a marker. The optimal parameters for the transformation of N. tabacum leaf cells were determined as: pressure, 1350 psi; tungsten particle size, 1.3 μm; plasmid DNA purification method, ethanol re-precipitation. The results should be useful for the development of biolistic transformation protocols for plant cells, including application for plant genome editing of agricultural species.

Sobre autores

A. Davlekamova

Skryabin Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology”
of the Russian Academy of Sciences

Email: timofeeva.bio@gmail.com
Russia, 117312, Moscow

A. Zubritsky

Skryabin Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology”
of the Russian Academy of Sciences

Email: timofeeva.bio@gmail.com
Russia, 117312, Moscow

T. Timofeeva

Skryabin Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology”
of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: timofeeva.bio@gmail.com
Russia, 117312, Moscow

I. Yakovleva

Skryabin Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology”
of the Russian Academy of Sciences

Email: timofeeva.bio@gmail.com
Russia, 117312, Moscow

A. Kamionskaya

Skryabin Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology”
of the Russian Academy of Sciences

Email: timofeeva.bio@gmail.com
Russia, 117312, Moscow

Bibliografia

  1. Sanford J.C. // Trends Biotechnol. 1988. V. 6. P. 299–302. https://doi.org/10.1016/0167-7799(88)90023-6
  2. Hansen G., Wright M.S. // Trends Plant Sci. 1999. V. 4. P. 226–231. https://doi.org/10.1016/S1360-1385(99)01412-0
  3. Jain R.K., Jain S., Wang B., Wu R. // Plant Cell Rep. 1996. V. 15. № 12. P. 963–968. https://doi.org/10.1007/BF00231597
  4. Sparks C.A., Jones H.D. // Meth. in Mol. Biol. 2009. V. 478. P. 71–92. https://doi.org/10.1007/978-1-59745-379-0_4
  5. Ismagul A., Yang N., Maltseva E., Iskakova G. // Plant Biol. 2018 V. 18. P. 135–143. https://doi.org/10.1186/s12870-018-1326-1
  6. Zhang J., Du H., Chao M., Yin Z., Yang H., Li Y., Huang F., Yu D. // Front. Plant Sci. 2016. V. 7. P. 628.https://doi.org/10.3389/fpls.2016.00628
  7. Аукенов Н.Е., Масабаева М.Р., Хасанова У.У. // Наука и Здравоохранение. 2014. № 1. С. 51–53.
  8. Gordon-Kamm W.J., Spencer T.M., Mangano M.L., Adams T.R. // The Plant Cell. 1990. V. 2. P. 603–618. https://doi.org/10.1105/tpc.2.7.603
  9. Sanford J.C., Smith F.D., Russell J.A. Meth. in Enzymol. 1993. V. 217. P. 483–509. https://doi.org/10.1016/0076-6879(93)17086-K
  10. Chee M.J.Y., Lycett G.W., Chin C.F. // Electronic J. Biotechnol. 2018. V. 34. 51–58. https://doi.org/10.1016/j.ejbt.2018.05.005

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (53KB)
3.

Baixar (155KB)
4.

Baixar (393KB)

Declaração de direitos autorais © А.А. Давлекамова, А.В. Зубрицкий, Т.А. Тимофеева, И.В. Яковлева, А.М. Камионская, 2023