Prospects of acoustic sensor systems for virus immunodetection (Review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Outbreaks of viral infectious diseases in humans and animals remain one of the global problems of our time. Therefore, one of the most popular areas in applied microbiology is the development of fast and sensitive methods for viruses detection, including those based on biosensor analysis methods. The paper describes the promise of acoustic sensor systems for viruses detection. The optimal capabilities of electroacoustic sensors in viruses detection, the possibility of conducting analysis in the presence of interfering factors (viral particles and microflora) and the repeated use of sensors are shown. The presented results demonstrate the promise of using acoustic sensors to viruses detection in microbiology, medicine, and veterinary medicine.

Full Text

Restricted Access

About the authors

О. I. Guliy

Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)

Author for correspondence.
Email: guliy_olga@mail.ru

Institute of Biochemistry and Physiology of Plants and Microorganisms

Russian Federation, Saratov, 410049

B. D. Zaitsev

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: guliy_olga@mail.ru

Saratov Branch

Russian Federation, Saratov, 410019

О. А. Karavaeva

Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)

Email: guliy_olga@mail.ru

Institute of Biochemistry and Physiology of Plants and Microorganisms

Russian Federation, Saratov, 410049

I. A. Borodina

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: guliy_olga@mail.ru

Saratov Branch

Russian Federation, Saratov, 410019

References

  1. Santo L., Kang K. National Ambulatory Medical Care Survey: 2019 National Summary Tables. // Series: National Ambulatory Medical Care Survey. 2023. https://doi.org/10.15620/cdc:123251
  2. Ruhan A., Wang H., Wang W., Tan W. // Virol Sin. 2020. V. 35. № 6. P. 699–712. https://doi.org/10.1007/s12250-020-00331-1
  3. Beeching N.J., Fletcher T.E., Fowler R. COVID-19. // BMJ Best Practices. BMJ Publishing Group. 2020. http://bestpractice.bmj.com/topics/en-gb/3000168
  4. Rabi F.A., Al Zoubi M.S., Kasasbeh G.A., Salameh D.M., Al-Nasser A.D. // Pathogens 2020. V. 9. 231. https://doi.org/10.3390/pathogens9030231
  5. Jackson J.K., Weiss M.A., Schwarzenberg A.B., Nelson R.M. Global Economic Effects of Covid-19. 2020. www.hsdl.org/?view&did=835306
  6. Kang J., Tahir A., Wang H., Chang J. // Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021. 13. № 4. e1700. https://doi.org/10.1002/wnan.1700
  7. Hematian A., Sadeghifard N., Mohebi R., Taherikalani M., Nasrolahi A., Amraei M., Ghafourian S. // Osong Public Health Res Perspect 2016. V. 7. № 2. P. 77–82. https://doi.org/10.1016/j.phrp.2015.11.011
  8. Lukose J., Barik A.K., Mithun N., Sanoop Pavithran M., George S.D., Murukeshan V.M., Chidangil S. // Biophys Rev. 2023. V. 15. № 2. P. 199–221. https://doi.org/10.1007/s12551-023-01059-4
  9. Chen L., Ruan F., Sun Y., Chen H., Liu M., Zhou J., Qin K. // J. Med. Virol. 2019. V. 91. № 6. P. 1168–1171. https://doi.org/10.1002/jmv.25408
  10. Lin B., Blaney K.M., Malanoski A.P., Ligler A.G., Schnur J.M., Metzgar D. et al. // J. Clin. Microbiol. 2007. V. 45. № 2. P. 443–452. https://doi.org/10.1128/JCM.01870-06
  11. Mehlmann M., Bonner A.B., Williams J.V., Dankbar D.M., Moore C.L., Kuchta R.D. et al.// J. Clin. Microbiol. 2007. V. 45 № 4. P. 1234–1237. https://doi.org/10.1128/JCM.02202-06
  12. Huguenin A., Moutte L., Renois F., Lévêque N., Talmud D., Abely M. et al.. // J. Med. Virol. 2012. V. 84. № 6. P. 979–985. https://doi.org/10.1002/jmv.23272
  13. Choi Y., Hwang J.H., Lee S.Y. // Small Methods. 2018. V. 2. 1700351. https://doi.org/10.1002/smtd.201700351
  14. Mokhtarzadeh A., Eivazzadeh-Keihan R., Pashazadeh P., Hejazi M., Gharaatifar N., Hasanzadeh et al. // Trends Analyt Chem. 2017. V. 97. P. 445–457. https://doi.org/10.1016/j.trac.2017.10.005
  15. Goksu O., Kaya S.I., Cetinkaya A., Ozkan S.A. // Biosens. Bioelectron: X 2022. V. 12. 100260. https://doi.org/10.1016/j.biosx.2022.100260
  16. Guliy О.I., Zaitsev B.D., Borodina I.A. Biosensors for Virus Detection in the Book Macro, Micro and Nano-biosensors. Potential Applications and Possible Limitations. /Eds.: M. Rai, A. Reshetilov, Y. Plekhanova, A.P. Ingle. 2020. Chapter 6. Р. 95-116. ISBN 978-3-030-55489-7. Chapter doi: 10.1007/978-3-030-55490-3_6.
  17. Гулий О.И., Зайцев Б.Д., Ларионова О.С., Бородина И.А. //Биофизика. 2019. Т. 64, № 6. С. 1094–1102. https://doi.org/10.1134/S0006302919060073
  18. Alhalaili B., Popescu I.N., Kamoun O., Alzubi F., Alawadhia S., Vidu R. // Sensors (Basel). 2020. V. 20. № 22. 6591. https://doi.org/10.3390/s20226591
  19. Grabowska I., Malecka K., Jarocka U., Radecki J., Radecka H. // Acta Biochim Pol. 2014. V. 61. № 3. P. 471–478.
  20. Khan M.Z.H., Hasan M.R., Hossain S.I., Ahommed M.S., Daizy M. // Biosens. Bioelectron. 2020. V. 166. 112431. https://doi.org/10.1016/j.bios.2020.112431
  21. Han J.-H., Lee D., Chew C.H.C., Kim T., Pak J.J. // Sens. Actuators B Chem. 2016. V. 228. 36–42. https://doi.org/10.1016/j.snb.2015.07.068
  22. Han K.N., Li C.A., Bui M.-P.N., Pham X.-H., Kim B.S., Choa Y.H. et al. // Sens. Actuators B Chem. 2013. V. 177. P. 472–477. https://doi.org/10.1016/j.snb.2012.11.030
  23. Yadav A.K., Verma D., Dalal N., Kumar A., Solanki P.R. // Biosens. Bioelectron: X. 2022. V. 12. 100257. https://doi.org/10.1016/j.biosx.2022.100257
  24. Guliy O.I, Kanevskiy M.V., Fomin A.S., Staroverov S.A., Bunin V.D. // Optics Communications. 2020. V. 465. 125605. https://doi.org/10.1016/j.optcom.2020.125605
  25. Erickson D., Mandal S., Yang A., Cordovez B. // J. Microfluid Nanofluid. 2008. V. 4. P. 33–52. https://doi.org/10.1007/s10404-007-0198-8
  26. Fan X., White I.M., Shopova S.I., Zhu H., Suter J.D., Sun Y. // Anal Chim Acta. 2008. V. 620. № 1–2. P. 8–26. https://doi.org/10.1016/j.aca.2008.05.022
  27. Garcia–Aljaro C., Munoz–Berbel X., Jenkins A.T.A., Blanch A.R., Munoz F.X. // Appl. Environ. Microbiol. 2008. V. 74. № 13. Р. 4054–4058. https://doi.org/10.1128/AEM.02806-07
  28. Homola J. Surface Plasmon Resonance Based Sensors. Berlin, Germany: Springer, 2006. 251 p. https://doi.org/10.1007/b100321
  29. Monzon-Hernandez D., Villatoro J. // Sens. Actuator B. Chem. 2006. V. 115 № 1. P. 227–231. https://doi.org/10.1016/j.snb.2005.09.006.
  30. Saylan Y., Denizli A. In Nanosensors for Smart Cities. /Eds. B. Han, , V.K. Tomer, T.A. Nguyen, A. Farmani, P. Kumar Singh., Amsterdam, The Netherlands: Elsevier, 2020. P. 501–511.
  31. Deng J., Zhao S., Liu Y., Liu C., Sun J. // ACS Appl. Bio Mater. 2021, 4, 5, 3863–3879. https://doi.org/10.1021/acsabm.0c01247.
  32. Yong Xiang Leong, Emily Xi Tan, Shi Xuan Leong, Charlynn Sher Lin Koh, Lam Bang Thanh Nguyen, Jaslyn Ru Ting Chen, Kelin Xia, Xing Yi Ling // ACS Nano 2022, V. 16. № 9. 13279–13293. https://doi.org/10.1021/acsnano.2c05731
  33. Singh N., Dkhar D.S., Chandra P., Azad U.P. // Biosensors 2023. V. 13. 166. https://doi.org/10.3390/ bios13020166
  34. Guliy O.I., Zaitsev B.D., Borodina I.A. in Nanobioanalytical Approaches to Medical Diagnostics, Eds. P.K. Maurya, P. Chandra, Sawston: Woodhead Publishing, 2022. P. 143–177. https://doi.org/10.1016/B978-0-323-85147-3.00004-9
  35. Purohit B., Vernekar P.R., Shetti N.P., Chandra P. // Sensors International. 2020. V. 1. 100040. https://doi.org/10.1016/j.sintl.2020.100040
  36. Gözde Durmuşa N., Linb R.L., Kozbergc M., Dermicid D., Khademhosseinie A., Demirci U. // Encyclopedia of microfluidics and Nanofluidics. New York: Springer Science+Business Media, 2014. https://doi.org/10.1007/978-3-642-27758-0_10-2
  37. Rocha-Gaso M.-I., Garc´ıa J.-V., Garc´ıa P., March-Iborra C., Jim´enez Y., Francis L.-A., Montoya A., Arnau A. // Sensors 2014. V. 14. № 9. P. 16434–16453. https://doi.org/10.3390/s140916434
  38. Guliy O.I., Zaitsev B.D., Borodina I.A. // Sensors 2023. V. 23. 6292. https://doi.org/10.3390/s23146292
  39. Tamarin O., Comeau S., Déjous C., Moynet D., Rebière D., Bezian J., Pistré J. // Biosens. Bioelectron. 2003. V. 18. № 5-6. P. 755–763. https://doi.org/10.1016/S0956-5663(03)00022-8
  40. Koenig B. Graetzel М. // Anal. Chem. 1994. V. 66. № 3. P. 341–348. https://doi.org/10.1021/ac00075a005
  41. Bisoffi M., Hjelle B., Brown D.C., Branch D.W., Edwards T.L., Brozik, et al. // Biosens. Bioelectron. 2008. V. 23. № 9. Р. 1397–1403. https://doi.org/10.1016/j.bios.2007.12.016
  42. Drobe H., Leidl A., Rost M., Ruge I. // Sensors and Actuators A: Physical. 1993. V. 37. P. 141–148. https://doi.org/10.1016/0924-4247(93)80026-D
  43. Petroni S., Tripoli G., Combi C., Vigna B., De Vittorio M., Todaro M., et al.. // Applied physics letters 2004. V. 85 (6). P. 1039–1041. https://doi.org/10.1063/1.1780598
  44. Go D. B., Atashbar M.Z., Ramshani Z., Chang H.-C. // Analytical Methods 2017. V. 9. № 28. P. 4112–4134. https://doi.org/10.1039/C7AY00690J
  45. Caliendo C. // Sensors 2023. V. 23. 2988. https://doi.org/10.3390/s23062988
  46. Skládal P. // Microchim. Acta. 2024. V. 191. 184. https://doi.org/10.1007/s00604-024-06257-9
  47. Kizek R., Krejcova L., Michalek P., Rodrigo M.M., Heger Z., Krizkova S. et al. // Dis. Diagn. 2015. V. 4. P. 47–66. https://doi.org/10.2147/NDD.S56771
  48. Srivastava A.K., Dev A., Karmakar S. // Environ. Chem. Lett. 2018. V. 16. № 4. P. 161–182. https://doi.org/10.1007/s10311-017-0674-7
  49. Wang R.,Wang L., Callaway Z.T., Lu H., Huang T.J., Li Y. // Sens. Actuators B Chem. 2017. V. 240. P. 934–940. https://doi.org/10.1016/j.snb.2016.09.067
  50. Erofeev A.S., Gorelkin P.V., Kolesov D.V., Kiselev G.A., Dubrovin E.V., Yaminsky I.V. // R. Soc. Open Sci. 2019. V. 6. 190255. https://doi.org/10.1098/rsos.190255
  51. Wangchareansak T., Sangma C., Ngernmeesri P., Thitithanyanont A., Lieberzeit P.A. // Anal. Bioanal. Chem. 2013. V. 405. P. 6471–6478. https://doi.org/10.1007/s00216-013-7057-0
  52. Gajendragad M.R., Kamath K.N.Y., Anil P.Y., Prabhudas K., Natarajan C. // Veterinary Microbiology 2001. V.78. P. 319–330. https://doi.org/10.1016/s0378-1135(00)00307-2
  53. Rickert J., Weiss T., Kraas W., Jung G., Göpel W. // Biosens. Bioelectron. 1996. V. 11. P. 591–598. https://doi.org/10.1016/0956-5663(96)83294-5
  54. Baca J.T., Severns V., Lovato D., Branch D.W., Larson R.S. // Sensors. 2015. V. 15. № 4. P. 8605–8614. https://doi.org/10.3390/s150408605
  55. Towner J.S., Rollin P.E., Bausch D.G., Sanchez A., Crary M.S., Vincent M., et al. // J. Virol. 2004. V. 78. № 8. P. 4330–4341. https://doi.org/10.1128/jvi.78.8.4330-4341.2004
  56. Vetelino J.F. In: Proc. of the IEEE Ultrason. Symp. 2010, San-Diego, 2269–2272. Publisher IEEE. https://doi.org/10.1109/ULTSYM.2010.5935621
  57. Narita F., Wang Z., Kurita H., Li Z., Shi Y., Jia Y., Soutis C. // Adv. Mater. 2021. V. 33. 2005448. https://doi.org/10.1002/adma.202005448
  58. Zuo B., Li S., Guo Z., Zhang J., Chen C. // Anal. Chem. 2004. V. 76. 3536–3540. https://doi.org/10.1021/ac035367b
  59. Guliy O.I., Zaitsev B.D., Semyonov A.P., Karavaeva O.A., Fomin A.S., Burov et al.// Ultrasound in Medicine & Biology. 2022. V. 48. № 5. P. 901–911. https://doi.org/10.1016/j.ultrasmedbio.2022.01.013
  60. Borodina I.A., Zaitsev B.D., Burygin G.L., Guliy O.I. // Sens. Actuators B Chem. 2018. V. 268. P. 217–222. https://doi.org/10.1016/j.snb.2018.04.063
  61. Guliy O., Zaitsev B., Teplykh A., Balashov S., Fomin A., Staroverov S., Borodina I. // Sensors (Switzerland) 2021. V. 21. № 5. 1822. https://doi.org/10.3390/s21051822
  62. Jiang Y., Tan C.Y., Tan S.Y., Wong M.S.F., Chen Y.F., Zhang L. et al. // Sens. Actuators B Chem. 2015. V. 209. Р. 78–84. https://doi.org/10.1016/j.snb.2014.11.103
  63. Albano D., Shum K., Tanner J., Fung Y. In: Proceedings of the 17th International Meeting on Chemical Sensors—IMCS 2018, Vienna, Austria, 2018. P. 211–213.
  64. Pandey L.M. // Expert Rev. Proteom. 2020. V. 17. P. 425–432. https://doi.org/10.1080/14789450.2020.1794831

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Origin of human coronaviruses (severe acute respiratory syndrome coronavirus (SARS-CoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Middle East respiratory syndrome coronavirus (MERS-CoV), human coronavirus (HCoV), porcine acute diarrhea syndrome coronavirus (SADS-CoV) [4].

Download (148KB)
3. Fig. 2. General diagram of the biosensor [15].

Download (204KB)
4. Fig. 3. Classification of acoustic sensors: BAW – bulk acoustic waves, SAW – surface acoustic waves; and APM – acoustic plate modes [38].

Download (141KB)
5. Fig. 4. Schematic diagram of a sensor system based on a piezoelectric resonator with a transverse electric field for detecting viruses using specific antibodies.

Download (261KB)
6. Fig. 5. Analysis of the TGS virus by an acoustic sensor based on a slot mode in an acoustic delay line.

Download (442KB)

Copyright (c) 2024 Russian Academy of Sciences