Prospects of acoustic sensor systems for virus immunodetection (Review)
- 作者: Guliy О.I.1, Zaitsev B.D.2, Karavaeva О.А.1, Borodina I.A.2
-
隶属关系:
- Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences
- 期: 卷 60, 编号 5 (2024)
- 页面: 445-454
- 栏目: Articles
- URL: https://cardiosomatics.ru/0555-1099/article/view/681852
- DOI: https://doi.org/10.31857/S0555109924050028
- EDN: https://elibrary.ru/QTYGJG
- ID: 681852
如何引用文章
详细
Outbreaks of viral infectious diseases in humans and animals remain one of the global problems of our time. Therefore, one of the most popular areas in applied microbiology is the development of fast and sensitive methods for viruses detection, including those based on biosensor analysis methods. The paper describes the promise of acoustic sensor systems for viruses detection. The optimal capabilities of electroacoustic sensors in viruses detection, the possibility of conducting analysis in the presence of interfering factors (viral particles and microflora) and the repeated use of sensors are shown. The presented results demonstrate the promise of using acoustic sensors to viruses detection in microbiology, medicine, and veterinary medicine.
全文:

作者简介
О. Guliy
Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)
编辑信件的主要联系方式.
Email: guliy_olga@mail.ru
Institute of Biochemistry and Physiology of Plants and Microorganisms
俄罗斯联邦, Saratov, 410049B. Zaitsev
Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences
Email: guliy_olga@mail.ru
Saratov Branch
俄罗斯联邦, Saratov, 410019О. Karavaeva
Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)
Email: guliy_olga@mail.ru
Institute of Biochemistry and Physiology of Plants and Microorganisms
俄罗斯联邦, Saratov, 410049I. Borodina
Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences
Email: guliy_olga@mail.ru
Saratov Branch
俄罗斯联邦, Saratov, 410019参考
- Santo L., Kang K. National Ambulatory Medical Care Survey: 2019 National Summary Tables. // Series: National Ambulatory Medical Care Survey. 2023. https://doi.org/10.15620/cdc:123251
- Ruhan A., Wang H., Wang W., Tan W. // Virol Sin. 2020. V. 35. № 6. P. 699–712. https://doi.org/10.1007/s12250-020-00331-1
- Beeching N.J., Fletcher T.E., Fowler R. COVID-19. // BMJ Best Practices. BMJ Publishing Group. 2020. http://bestpractice.bmj.com/topics/en-gb/3000168
- Rabi F.A., Al Zoubi M.S., Kasasbeh G.A., Salameh D.M., Al-Nasser A.D. // Pathogens 2020. V. 9. 231. https://doi.org/10.3390/pathogens9030231
- Jackson J.K., Weiss M.A., Schwarzenberg A.B., Nelson R.M. Global Economic Effects of Covid-19. 2020. www.hsdl.org/?view&did=835306
- Kang J., Tahir A., Wang H., Chang J. // Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021. 13. № 4. e1700. https://doi.org/10.1002/wnan.1700
- Hematian A., Sadeghifard N., Mohebi R., Taherikalani M., Nasrolahi A., Amraei M., Ghafourian S. // Osong Public Health Res Perspect 2016. V. 7. № 2. P. 77–82. https://doi.org/10.1016/j.phrp.2015.11.011
- Lukose J., Barik A.K., Mithun N., Sanoop Pavithran M., George S.D., Murukeshan V.M., Chidangil S. // Biophys Rev. 2023. V. 15. № 2. P. 199–221. https://doi.org/10.1007/s12551-023-01059-4
- Chen L., Ruan F., Sun Y., Chen H., Liu M., Zhou J., Qin K. // J. Med. Virol. 2019. V. 91. № 6. P. 1168–1171. https://doi.org/10.1002/jmv.25408
- Lin B., Blaney K.M., Malanoski A.P., Ligler A.G., Schnur J.M., Metzgar D. et al. // J. Clin. Microbiol. 2007. V. 45. № 2. P. 443–452. https://doi.org/10.1128/JCM.01870-06
- Mehlmann M., Bonner A.B., Williams J.V., Dankbar D.M., Moore C.L., Kuchta R.D. et al.// J. Clin. Microbiol. 2007. V. 45 № 4. P. 1234–1237. https://doi.org/10.1128/JCM.02202-06
- Huguenin A., Moutte L., Renois F., Lévêque N., Talmud D., Abely M. et al.. // J. Med. Virol. 2012. V. 84. № 6. P. 979–985. https://doi.org/10.1002/jmv.23272
- Choi Y., Hwang J.H., Lee S.Y. // Small Methods. 2018. V. 2. 1700351. https://doi.org/10.1002/smtd.201700351
- Mokhtarzadeh A., Eivazzadeh-Keihan R., Pashazadeh P., Hejazi M., Gharaatifar N., Hasanzadeh et al. // Trends Analyt Chem. 2017. V. 97. P. 445–457. https://doi.org/10.1016/j.trac.2017.10.005
- Goksu O., Kaya S.I., Cetinkaya A., Ozkan S.A. // Biosens. Bioelectron: X 2022. V. 12. 100260. https://doi.org/10.1016/j.biosx.2022.100260
- Guliy О.I., Zaitsev B.D., Borodina I.A. Biosensors for Virus Detection in the Book Macro, Micro and Nano-biosensors. Potential Applications and Possible Limitations. /Eds.: M. Rai, A. Reshetilov, Y. Plekhanova, A.P. Ingle. 2020. Chapter 6. Р. 95-116. ISBN 978-3-030-55489-7. Chapter doi: 10.1007/978-3-030-55490-3_6.
- Гулий О.И., Зайцев Б.Д., Ларионова О.С., Бородина И.А. //Биофизика. 2019. Т. 64, № 6. С. 1094–1102. https://doi.org/10.1134/S0006302919060073
- Alhalaili B., Popescu I.N., Kamoun O., Alzubi F., Alawadhia S., Vidu R. // Sensors (Basel). 2020. V. 20. № 22. 6591. https://doi.org/10.3390/s20226591
- Grabowska I., Malecka K., Jarocka U., Radecki J., Radecka H. // Acta Biochim Pol. 2014. V. 61. № 3. P. 471–478.
- Khan M.Z.H., Hasan M.R., Hossain S.I., Ahommed M.S., Daizy M. // Biosens. Bioelectron. 2020. V. 166. 112431. https://doi.org/10.1016/j.bios.2020.112431
- Han J.-H., Lee D., Chew C.H.C., Kim T., Pak J.J. // Sens. Actuators B Chem. 2016. V. 228. 36–42. https://doi.org/10.1016/j.snb.2015.07.068
- Han K.N., Li C.A., Bui M.-P.N., Pham X.-H., Kim B.S., Choa Y.H. et al. // Sens. Actuators B Chem. 2013. V. 177. P. 472–477. https://doi.org/10.1016/j.snb.2012.11.030
- Yadav A.K., Verma D., Dalal N., Kumar A., Solanki P.R. // Biosens. Bioelectron: X. 2022. V. 12. 100257. https://doi.org/10.1016/j.biosx.2022.100257
- Guliy O.I, Kanevskiy M.V., Fomin A.S., Staroverov S.A., Bunin V.D. // Optics Communications. 2020. V. 465. 125605. https://doi.org/10.1016/j.optcom.2020.125605
- Erickson D., Mandal S., Yang A., Cordovez B. // J. Microfluid Nanofluid. 2008. V. 4. P. 33–52. https://doi.org/10.1007/s10404-007-0198-8
- Fan X., White I.M., Shopova S.I., Zhu H., Suter J.D., Sun Y. // Anal Chim Acta. 2008. V. 620. № 1–2. P. 8–26. https://doi.org/10.1016/j.aca.2008.05.022
- Garcia–Aljaro C., Munoz–Berbel X., Jenkins A.T.A., Blanch A.R., Munoz F.X. // Appl. Environ. Microbiol. 2008. V. 74. № 13. Р. 4054–4058. https://doi.org/10.1128/AEM.02806-07
- Homola J. Surface Plasmon Resonance Based Sensors. Berlin, Germany: Springer, 2006. 251 p. https://doi.org/10.1007/b100321
- Monzon-Hernandez D., Villatoro J. // Sens. Actuator B. Chem. 2006. V. 115 № 1. P. 227–231. https://doi.org/10.1016/j.snb.2005.09.006.
- Saylan Y., Denizli A. In Nanosensors for Smart Cities. /Eds. B. Han, , V.K. Tomer, T.A. Nguyen, A. Farmani, P. Kumar Singh., Amsterdam, The Netherlands: Elsevier, 2020. P. 501–511.
- Deng J., Zhao S., Liu Y., Liu C., Sun J. // ACS Appl. Bio Mater. 2021, 4, 5, 3863–3879. https://doi.org/10.1021/acsabm.0c01247.
- Yong Xiang Leong, Emily Xi Tan, Shi Xuan Leong, Charlynn Sher Lin Koh, Lam Bang Thanh Nguyen, Jaslyn Ru Ting Chen, Kelin Xia, Xing Yi Ling // ACS Nano 2022, V. 16. № 9. 13279–13293. https://doi.org/10.1021/acsnano.2c05731
- Singh N., Dkhar D.S., Chandra P., Azad U.P. // Biosensors 2023. V. 13. 166. https://doi.org/10.3390/ bios13020166
- Guliy O.I., Zaitsev B.D., Borodina I.A. in Nanobioanalytical Approaches to Medical Diagnostics, Eds. P.K. Maurya, P. Chandra, Sawston: Woodhead Publishing, 2022. P. 143–177. https://doi.org/10.1016/B978-0-323-85147-3.00004-9
- Purohit B., Vernekar P.R., Shetti N.P., Chandra P. // Sensors International. 2020. V. 1. 100040. https://doi.org/10.1016/j.sintl.2020.100040
- Gözde Durmuşa N., Linb R.L., Kozbergc M., Dermicid D., Khademhosseinie A., Demirci U. // Encyclopedia of microfluidics and Nanofluidics. New York: Springer Science+Business Media, 2014. https://doi.org/10.1007/978-3-642-27758-0_10-2
- Rocha-Gaso M.-I., Garc´ıa J.-V., Garc´ıa P., March-Iborra C., Jim´enez Y., Francis L.-A., Montoya A., Arnau A. // Sensors 2014. V. 14. № 9. P. 16434–16453. https://doi.org/10.3390/s140916434
- Guliy O.I., Zaitsev B.D., Borodina I.A. // Sensors 2023. V. 23. 6292. https://doi.org/10.3390/s23146292
- Tamarin O., Comeau S., Déjous C., Moynet D., Rebière D., Bezian J., Pistré J. // Biosens. Bioelectron. 2003. V. 18. № 5-6. P. 755–763. https://doi.org/10.1016/S0956-5663(03)00022-8
- Koenig B. Graetzel М. // Anal. Chem. 1994. V. 66. № 3. P. 341–348. https://doi.org/10.1021/ac00075a005
- Bisoffi M., Hjelle B., Brown D.C., Branch D.W., Edwards T.L., Brozik, et al. // Biosens. Bioelectron. 2008. V. 23. № 9. Р. 1397–1403. https://doi.org/10.1016/j.bios.2007.12.016
- Drobe H., Leidl A., Rost M., Ruge I. // Sensors and Actuators A: Physical. 1993. V. 37. P. 141–148. https://doi.org/10.1016/0924-4247(93)80026-D
- Petroni S., Tripoli G., Combi C., Vigna B., De Vittorio M., Todaro M., et al.. // Applied physics letters 2004. V. 85 (6). P. 1039–1041. https://doi.org/10.1063/1.1780598
- Go D. B., Atashbar M.Z., Ramshani Z., Chang H.-C. // Analytical Methods 2017. V. 9. № 28. P. 4112–4134. https://doi.org/10.1039/C7AY00690J
- Caliendo C. // Sensors 2023. V. 23. 2988. https://doi.org/10.3390/s23062988
- Skládal P. // Microchim. Acta. 2024. V. 191. 184. https://doi.org/10.1007/s00604-024-06257-9
- Kizek R., Krejcova L., Michalek P., Rodrigo M.M., Heger Z., Krizkova S. et al. // Dis. Diagn. 2015. V. 4. P. 47–66. https://doi.org/10.2147/NDD.S56771
- Srivastava A.K., Dev A., Karmakar S. // Environ. Chem. Lett. 2018. V. 16. № 4. P. 161–182. https://doi.org/10.1007/s10311-017-0674-7
- Wang R.,Wang L., Callaway Z.T., Lu H., Huang T.J., Li Y. // Sens. Actuators B Chem. 2017. V. 240. P. 934–940. https://doi.org/10.1016/j.snb.2016.09.067
- Erofeev A.S., Gorelkin P.V., Kolesov D.V., Kiselev G.A., Dubrovin E.V., Yaminsky I.V. // R. Soc. Open Sci. 2019. V. 6. 190255. https://doi.org/10.1098/rsos.190255
- Wangchareansak T., Sangma C., Ngernmeesri P., Thitithanyanont A., Lieberzeit P.A. // Anal. Bioanal. Chem. 2013. V. 405. P. 6471–6478. https://doi.org/10.1007/s00216-013-7057-0
- Gajendragad M.R., Kamath K.N.Y., Anil P.Y., Prabhudas K., Natarajan C. // Veterinary Microbiology 2001. V.78. P. 319–330. https://doi.org/10.1016/s0378-1135(00)00307-2
- Rickert J., Weiss T., Kraas W., Jung G., Göpel W. // Biosens. Bioelectron. 1996. V. 11. P. 591–598. https://doi.org/10.1016/0956-5663(96)83294-5
- Baca J.T., Severns V., Lovato D., Branch D.W., Larson R.S. // Sensors. 2015. V. 15. № 4. P. 8605–8614. https://doi.org/10.3390/s150408605
- Towner J.S., Rollin P.E., Bausch D.G., Sanchez A., Crary M.S., Vincent M., et al. // J. Virol. 2004. V. 78. № 8. P. 4330–4341. https://doi.org/10.1128/jvi.78.8.4330-4341.2004
- Vetelino J.F. In: Proc. of the IEEE Ultrason. Symp. 2010, San-Diego, 2269–2272. Publisher IEEE. https://doi.org/10.1109/ULTSYM.2010.5935621
- Narita F., Wang Z., Kurita H., Li Z., Shi Y., Jia Y., Soutis C. // Adv. Mater. 2021. V. 33. 2005448. https://doi.org/10.1002/adma.202005448
- Zuo B., Li S., Guo Z., Zhang J., Chen C. // Anal. Chem. 2004. V. 76. 3536–3540. https://doi.org/10.1021/ac035367b
- Guliy O.I., Zaitsev B.D., Semyonov A.P., Karavaeva O.A., Fomin A.S., Burov et al.// Ultrasound in Medicine & Biology. 2022. V. 48. № 5. P. 901–911. https://doi.org/10.1016/j.ultrasmedbio.2022.01.013
- Borodina I.A., Zaitsev B.D., Burygin G.L., Guliy O.I. // Sens. Actuators B Chem. 2018. V. 268. P. 217–222. https://doi.org/10.1016/j.snb.2018.04.063
- Guliy O., Zaitsev B., Teplykh A., Balashov S., Fomin A., Staroverov S., Borodina I. // Sensors (Switzerland) 2021. V. 21. № 5. 1822. https://doi.org/10.3390/s21051822
- Jiang Y., Tan C.Y., Tan S.Y., Wong M.S.F., Chen Y.F., Zhang L. et al. // Sens. Actuators B Chem. 2015. V. 209. Р. 78–84. https://doi.org/10.1016/j.snb.2014.11.103
- Albano D., Shum K., Tanner J., Fung Y. In: Proceedings of the 17th International Meeting on Chemical Sensors—IMCS 2018, Vienna, Austria, 2018. P. 211–213.
- Pandey L.M. // Expert Rev. Proteom. 2020. V. 17. P. 425–432. https://doi.org/10.1080/14789450.2020.1794831
补充文件
