Антибиопленочное и пробиопленочное действие наноматериалов на микроорганизмы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В обзоре обобщена и проанализирована информация, касающаяся влияния наночастиц (НЧ) металлов, оксидов металлов и углерода на биопленкообразующую способность и зрелые биопленки микроорганизмов. В качестве механизмов действия НЧ на биопленки рассматривается воздействие на жизнеспособность единичных микробных клеток, включающее прямое нарушение поверхностных структур клетки и окислительный стресс, связанный с образованием активных форм кислорода (АФК), а также влияние на продукцию экзополимерного матрикса и на систему кворум-сенсинга. Более подробно описано воздействие НЧ серебра, золота, некоторых оксидов металлов и углеродных наноматериалов на микробные биопленки. Сравнивается действие металлических и углеродных НЧ на микробные биопленки. Отмечается как антибиопленочное, так и пробиопленочное действие НЧ в зависимости от их природы, рассматривается перспектива их применения как антимикробных агентов и носителей для получения микробных биопленок биотехнологического значения.

Полный текст

Доступ закрыт

Об авторах

Ю. Г. Максимова

Институт экологии и генетики микроорганизмов УрО РАН — филиал Пермского федерального исследовательского центра УрО РАН; Пермский государственный национальный исследовательский университет

Автор, ответственный за переписку.
Email: yul_max@mail.ru
Россия, Пермь, 614081; Пермь, 614990

А. С. Зорина

Институт экологии и генетики микроорганизмов УрО РАН — филиал Пермского федерального исследовательского центра УрО РАН

Email: yul_max@mail.ru
Россия, Пермь, 614081

Список литературы

  1. Singh J., Dutta T., Kim K.-H., Rawat M., Samddar P., Kumar P. // J. Nanobiotechnol. 2018. V. 16. P. 84. https://doi.org/10.1186/s12951-018-0408-4
  2. Whitesides G. // Small. 2005. V. 1. № 2. P. 172–179. https://doi.org/10.1002/smll.200400130
  3. Johnston H. J., Hutchison G. R., Christensen F. M., Peters S., Hankin S., Aschberger K., Stone V. // Nanotoxicology. 2010. V. 4. № 2. P. 207–246. https://doi.org/10.3109/17435390903569639
  4. Shvedova A. A., Pietroiusti A., Fadeel B., Kagan V. E. // Toxicol. Appl. Pharmacol. 2012. V. 261. № 2. P. 121–133. https://doi.org/10.1016/j.taap.2012.03.023
  5. Devi L. S., Joshi S. R. // Mycobiology. 2012. V. 40. № 1. P. 27–34. https://doi.org/10.5941/MYCO.2012.40.1.027
  6. Burygin G. L. // Nanoscale Res. Let. 2009. V. 4. P. 794–801. https://doi.org/10.1007/s11671-009-9316-8
  7. Grace N. A., Pandian K. // Colloids Surf. A Physicochem. Eng. Asp. 2007. V. 297. № 1–3. P. 63–70. https://doi.org/10.1016/j.colsurfa.2006.10.024
  8. Saha B., Bhattacharya J., Mukherjee A., Ghosh A., Santra C., Dasgupta A. K., Karmakar P. // Nanoscale Res. Lett. 2007. V. 2. № 12. P. 614–622. https://doi.org/10.1007/s11671-007-9104-2
  9. Rai A., Prabhune A., Perry C. C. // J. Mater. Chem. 2010. V. 20. № 32. P. 6789–6798. https://doi.org/10.1039/C0JM00817F
  10. Shahverdi A. R., Fakhimi A., Shahverdi H. R., Minaian S. // Nanomed.: Nanotechnol. Biol. Med. 2007. V. 3. № 2. P. 168–171. https://doi.org/10.1016/j.nano.2007.02.001
  11. Zheng K., Setyawati M. I., Lim, T.P., Leong D. T., Xie J. // ACS Nano. 2016. V. 10. № 8. P. 7934–7942. https://doi.org/10.1021/acsnano.6b03862
  12. Chopra I. // J. Antimicrob. Chemother. 2007. V. 59. № 4. P. 587–590. https://doi.org/10.1093/jac/dkm006
  13. Wang S. G., Chen Y. C., Chen Y. C. // Nanomedicine (Lond). 2018. V. 13. № 12. P. 1405–1416. https://doi.org/10.2217/nnm-2017-0380
  14. Fuller M., Whiley H., Köper I. //SN Appl. Sci. 2020. V. 2. 1022. https://doi.org/10.1007/s42452-020-2835-8
  15. Wang J., Zhang J., Liu K., He J., Zhang Y., Chen S., Ma G., Cui Y., Wang L., Gao D. // Int. J. Pharm. 2020. V. 580. 119231. https://doi.org/10.1016/j.ijpharm.2020.119231
  16. Fan Y., Pauer A. C., Gonzales A. A., Fenniri H. // Int. J. Nanomed. 2019. V. 14. P. 7281–7289. https://doi.org/10.2147/IJN.S209756
  17. Chavan C., Kamble S., Murthy A. V.R., Kale S. N. // Nanotechnology. 2020. V. 31. № 21. 215604. https://doi.org/10.1088/1361–6528/ab72b4
  18. Rocca D. M., Silvero M. J., Aiassa V., Becerra M. C. // Photodiagnosis. Photod. Ther. 2020. V. 31. 101811. https://doi.org/10.1016/j.pdpdt.2020.101811
  19. Flemming H.-C., Wingender J. // Nature Reviews Microbiology. 2010. V. 8. P. 623–633. https://doi.org/10.1038/nrmicro2415
  20. Abdallah M., Benoliel C., Drider D., Dhulster P., Chihib N. E. // Arch. Microbiol. 2014. V. 196. № 7. P. 453–472. https://doi.org/10.1007/s00203-014-0983-1
  21. Wingender J., Flemming H. C. // Int. J. Hyg. Environ. Health. 2011. V. 214. № 6. P. 417–423. https://doi.org/10.1016/j.ijheh.2011.05.009
  22. Al-Wrafy F.A., Al-Gheethi A.A., Ponnusamy S. K., Noman E. A., Fattah S. A. Chemosphere. 2022. 288. 132603. https://doi.org/10.1016/j.chemosphere.2021.132603
  23. Ozdal M., Gurkok S. // ADMET & DMPK. 2022. V. 10. № 2. P. 115–129. https://doi.org/10.5599/admet.1172
  24. Teixeira-Santos R., Gomes M., Gomes L. C., Mergulhão F. J. // iScience. 2020. V. 24. № 1. 102001. https://doi.org/10.1016/j.isci.2020.102001
  25. Kumari A., Rajeev R., Benny L., Sudhakar Y. N., Varghese A., Hegde G. // Adv. Colloid Interface Sci. 2021. V. 297. 102542. https://doi.org/10.1016/j.cis.2021.102542
  26. Zhao Q., Wang S., Lv Z., Zupanic A., Guo S., Zhao Q., Jiang L., Yu Y. // Biotechnol. Adv. 2022. V. 59. 107982. https://doi.org/10.1016/j.biotechadv.2022.107982
  27. Maksimova Yu.G., Nikulin S. M., Osovetskii B. M., Demakov V. A. // Appl. Biochem. Microbiol. 2017. V. 53. № 5. P. 506–512. https://doi.org/10.1134/S0003683817050118
  28. Pondman K., Le Gac S., Kishore U. // Immunobiology. 2022. V. 228. № 2. 152317. https://doi.org/10.1016/j.imbio.2022.152317
  29. Musee N., Thwala M., Nota N. // J. Environ. Monit. 2011. V. 13. № 5. P. 1164–1183. https://doi.org/10.1039/C1EM10023H
  30. Kulshrestha S., Qayyum S., Khan A. U. // Microb. Pathog. 2017. V. 103. P. 167–177. https://doi.org/10.1016/j.micpath.2016.12.022
  31. Yu Q., Li J., Zhang Y., Wang Y., Liu L., Li M. // Sci. Rep. 2016. V. 6. P. 26667. https://doi.org/10.1038/srep26667
  32. Thill A., Zeyons O., Spalla O., Chauvat F., Rose J., Ayffan M., Flank A. M. // Environ. Sci. Technol. 2006. V. 40. № 19. P. 6151–6156. https://doi.org/10.1021/es060999b
  33. Jones N., Ray B., Ranjit K. T., Manna A. C. // FEMS Microbiol. Lett. 2008. V. 279. № 1. P. 71–76. https://doi.org/10.1111/j.1574-6968.2007.01012.x
  34. Kang S., Pinault M., Pfefferle L. D., Elimelech M. // Langmuir. 2007. V. 23. № 17. P. 8670–8673. https://doi.org/10.1021/la701067r
  35. Kang S., Herzberg M., Rodrigues D. F., Elimelech M. // Langmuir. 2008. V. 24. № 13. P. 6409–6413. https://doi.org/10.1021/la800951v
  36. Tao Y., Zhou F., Wang K., Yang D., Sacher E. // Molecules. 2022. V. 27. № 20. 6951. https://doi.org/10.3390/molecules27206951
  37. Maness P-C., Smolinski S., Blake D. M., Huang Z., Wolfrum E. J., Jacoby W. A. // Appl. Environ. Microbiol. 1999. V. 65. № 9. P. 4094–4098. https://doi.org/10.1128/aem.65.9.4094-4098.1999
  38. Chawengkijwanich C., Hayata Y. // Int. J. Food Microbiol. 2008. V. 123. № 3. P. 288–292. https://doi.org/10.1016/j.ijfoodmicro.2007.12.017
  39. Kim B., Kim D., Cho D., Cho S. // Chemosphere. 2003. V. 52. № 1. P. 277–281. https://doi.org/10.1016/S0045-6535(03)00051-1
  40. Chorianopoulos N. G., Tsoukleris D. S., Panagou E. Z., Falaras P., Nychas G-J.E. // Food Microbiol. 2011. V. 28. № 1. P. 164–170. https://doi.org/10.1016/j.fm.2010.07.025
  41. Pramanik A., Laha D., Bhattacharya D., Pramanik P., Karmakar P. // Colloids Surf. 2012. V. 96. P. 50–55. https://doi.org/10.1016/j.colsurfb.2012.03.021
  42. Chamundeeswari M., Sobhana S. S.L., Jacob J. P., Kumar M. G., Devi M. P., Sastry T. P., Mandal A. B. // Biotechnol. Appl. Biochem. 2010. V. 55. № 1. P. 29–35. https://doi.org/10.1042/ba20090198
  43. Koper O., Klabunde J., Marchin G., Klabunde K. J., Stoimenov P., Bohra L. // Curr. Microbiol. 2002. V. 44. № 1. P. 49–55. https://doi.org/10.1007/s00284-001-0073-x
  44. Hetrick E. M., Shin J. H., Paul H. S., Schoenfisch M. H. // Biomaterials. 2009. V. 30. № 14. P. 2782-2789. https://doi.org/10.1016/j.biomaterials.2009.01.052
  45. Wadhwani P., Heidenreich N., Podeyn B., Bürck J., Ulrich A. S. // Biomater. Sci. 2017. V. 5. № 4. P. 817–827. https://doi.org/10.1039/C7BM00069C
  46. Lee B., Park J., Ryu M., Kim S., Joo M., Yeom J. H., Kim S., Park Y., Lee K., Bae J. // Sci. Rep. 2017. V. 7. 13572. https://doi.org/10.1038/s41598-017-14127-z
  47. Wang S., Yan C., Zhang X., Shi D., Chi L., Luo G., Deng J. // Biomater. Sci. 2018. V. 6. № 10. P. 2757–2772. https://doi.org/10.1039/c8bm00807h
  48. Palmieri G., Tatè R., Gogliettino M., Balestrieri M., Rea I., Terracciano M., Proroga Y. T., Capuano F., Anastasio A., De Stefano L. // Bioconjug. Chem. 2018. V. 29. № 11. P. 3877–3885. https://doi.org/10.1021/acs.bioconjchem.8b00706
  49. Li W., Geng X., Liu D., Li Z. // Int. J. Nanomed. 2019. V. 14. P. 8047–8058. https://doi.org/10.2147/IJN.S212750
  50. Vinoj G., Pati R., Sonawane A., Vaseeharan B. // Antimicrob. Agents Chemother. 2014. V. 59. № 2. P. 763–771. https://doi.org/10.1128/aac.03047-14
  51. Peng H., Borg R. E., Dow L. P., Pruitt B. L., Chen I. A. // Proc. Natl. Acad. Sci. USA. 2020. V. 117. № 4. P. 1951–1961. https://doi.org/10.1073/pnas.1913234117
  52. Chifiriuc C., Grumezescu V., Grumezescu A., Saviuc C., Lazăr V., Andronescu E. // Nanoscale Res. Lett. 2012. V. 7. № 1. P. 209. https://doi.org/10.1186/1556-276x-7-209
  53. Morones J. R., Elechiguerra J. L., Camacho A., Holt K., Kouri J. B., Yacaman M. J. // Nanotechnology. 2005. V. 16. № 10. P. 2346–2353. https://doi.org/10.1088/0957-4484/16/10/059
  54. Pal S., Tak Y. K., Song J. M. // Appl. Environ. Microbiol. 2007. V. 73. № 6. P. 1712–1720. https://doi.org/10.1128/AEM.02218-06
  55. Cho K. H., Park J. E., Osaka T., Park S. G. // Electrochim. Acta. 2005. V. 51. № 5. P. 956–960. https://doi.org/10.1016/j.electacta.2005.04.071
  56. Baker C., Pradhan A., Pakstis L., Pochan D. J., Shah S. I. // J. Nanosci. Nanotechnol. 2005. V. 5. № 2. P. 244–249. https://doi.org/10.1166/jnn.2005.034
  57. Martínez-Castañón G.A., Niño-Martínez N., Martínez-Gutierrez F., Martínez-Mendoza J.R., Ruiz F. // J. Nanoparticle Res. 2008. V. 10. № 8. P. 1343–1348. https://doi.org/10.1007/s11051-008-9428-6
  58. Huang L. // J Inorg Biochem. 2005. V. 99. № 5. P. 986–993. https://doi.org/10.1016/j.jinorgbio.2004.12.022
  59. Lellouche J., Friedman A., Lellouche J.-P., Gedanken A., Banin E. // Nanomed.: Nanotechnol. Biol. Med. 2012. V. 8. № 5. P. 702–711. doi.org/10.1016/j.nano.2011.09.002
  60. Ortiz-Benítez E.A., Velázquez-Guadarrama N., Durán Figueroa N. V., Quezada H., De Jesús Olivares-Trejo J. // Metallomics. 2019. V. 11. № 7. P. 1265–1276. https://doi.org/10.1039/c9mt00084d
  61. Zheng K., Setyawati M. I., Leong D. T., Xie J. // ACS Nano. 2017. V. 11. № 7. P. 6904–6910. https://doi.org/10.1021/acsnano.7b02035
  62. Xing X., Ma W., Zhao X., Wang J., Yao L., Jiang X., Wu Z. // Langmuir. 2018. V. 34. № 42. P. 12583–12589. https://doi.org/10.1021/acs.langmuir.8b01700
  63. Zhou Y., Kong Y., Kundu S., Cirillo J. D., Liang H. // J. Nanobiotechnol. 2012. V. 10. P. 19. https://doi.org/10.1186/1477-3155-10-19
  64. Mubarak Ali D., Thajuddin N., Jeganathan K., Gunasekaran M. // Colloids Surf. B Biointerfaces. 2011. V. 85. № 2. P. 360–365. https://doi.org/10.1016/j.colsurfb.2011.03.009
  65. Badwaik V. D., Vangala L. M., Pender D. S., Willis C. B., Aguilar Z. P., Gonzalez M. S., Paripelly R., Dakshinamurthy R. // Nanoscale Res. Lett. 2012. V. 7. № 1. P. 623. https://doi.org/10.1186/1556-276X-7-623
  66. Bankier C., Matharu R. K., Cheong Y. K., Ren G. G., Cloutman-Green E., Ciric L. // Sci. Rep. 2019. V. 9. P. 16074. https://doi.org/10.1038/s41598-019-52473-2
  67. Shaikh S., Nazam N., Rizvi S. M.D., Ahmad K., Baig M. H., Lee E. J., Choi I. // Int. J. Mol. Sci. 2019. V. 20. № 10. P. 2468. https://doi.org/10.3390/ijms20102468
  68. Linklater D. P., Baulin V. A., Le Guével X., Fleury J., Hanssen E., Nguyen T. H.P., Juodkazis S., Bryant G., Crawford R. J., Stoodley P., Ivanova E. P. // Adv. Mater. 2020. V. 32. № 52. P. 2005679. https://doi.org/10.1002/adma.202005679
  69. Campoccia D., Montanaro L., Arciola C. R. // Biomaterials. 2013. V. 34. № 34. P. 8533–8554. https://doi.org/10.1016/j.biomaterials.2013.07.089
  70. Дерябин Д. Г., Васильченко А. С., Алешина Е. С., Тлягулова А. С., Никиян А. Н. // Российские нанотехнологии. 2010. Т. 5. № 11–12. С. 103–108.
  71. Maksimova Y., Zorina A., Nesterova L. // Microorganisms. 2023. V. 11. P. 1221. https://doi.org/10.3390/microorganisms11051221
  72. Applerot G., Lrllouche J., Perkas N., Nitzan Y., Gedanken A., Banin E. // RSC Adv. 2012. V. 2. № 6. P. 2314–2321. https://doi.org/10.1039/C2RA00602B
  73. Martín S. M., Barros R., Domi B., Rumbo C., Poddighe M., Aparicio S., Suarez-Diez M., Tamayo-Ramos J.A. // Nanomaterials. 2021. V. 11. № 9. P. 2272. https://doi.org/10.3390/nano11092272
  74. Vecitis C. D., Zodrow K. R., Kang S., Elimelech M. // ACS Nano. 2010. V. 4. № 9. P. 5471–5479. https://doi.org/10.1021/nn101558x
  75. Jackson P., Jacobsen N. R., Baun A., Birkedal R., Kühnel D., Jensen K. A., Vogel U., Wallin H. // Chem. Cent. J. 2013. V. 7. P. 154. https://doi.org/10.1186/1752-153X-7-154
  76. Kang S., Mauter M. S., Elimelech M. // Environ. Sci. Technol. 2008. V. 42. № 19. P. 7528–7534. https://doi.org/10.1021/es8010173
  77. Chen C.-Y., Jafvert C. T. // Carbon. 2011. V. 49. № 15. P. 5099–5106. https://doi.org/10.1016/j.carbon.2011.07.029
  78. Mohammad G., Mishra V. K., Pandey H. P. // Digest J Nanomater Biostruct. 2008. V. 3. № 4. P. 159–162.
  79. Fenoglio I., Tomatis M., Lison D., Muller J., Fonseca A., Nagy J. B., Fubini B. // Free Radic. Biol. Med. 2006. V. 40. № 7. P. 1227–1233. https://doi.org/10.1016/j.freeradbiomed.2005.11.010
  80. Hall-Stoodley L., Costerton J. W., Stoodley P. // Nat. Rev. Microbiol. 2004. V. 2. № 2. P. 95–108. https://doi.org/10.1038/nrmicro821
  81. Bjarnsholt T. // APMIS. 2013. V. 121. № 136. P. 1–58. https://doi.org/10.1111/apm.12099
  82. Flemming H.-C., Neu T. R., Wozniak D. J. // J. Bacteriol. 2007. V. 189. № 22. P. 7945–7947. https://doi.org/10.1128/JB.00858-07
  83. Rodrigues D. F., Elimelech M. // Environ. Sci. Technol. 2010. V. 44. № 12. P. 4583–4589. https://doi.org/10.1021/es1005785
  84. Lundqvist M., Stigler J., Elia G., Lynch I., Cedervall T., Dawson K. A. // Proc. Natl. Acad. Sci. USA. 2008. V. 105. № 38. P. 14265–14270. https://doi.org/10.1073/pnas.0805135105
  85. Takenaka S., Pitts B., Trivedi H. M., Stewart P. S. // Appl. Environ. Microbiol. 2009. V. 75. № 6. 1750. https://doi.org/10.1128/AEM.02279-08
  86. Stewart P. S. // J. Bacteriol. Res. 2003. V. 185. № 5. P. 1485. https://doi.org/10.1128/JB.185.5.1485-1491.2003
  87. Peulen T. O., Wilkinson K. J. // Environ. Sci. Technol. 2011. V. 45. № 8. P. 3367. https://doi.org/10.1021/es103450g
  88. Guiot E., Georges P., Brun A., Fontaine-Aupart M., Bellon-Fontaine M.-N., Briandet R. // Photochem. Photobiol. 2002. V. 75. № 6. P. 570–578. https://doi.org/10.1562/0031-8655(2002)075<0570: hodimb>2.0.co;2
  89. Sanabria H., Kubota Y., Waxham M. N. // Biophys. J. 2007. V. 92. № 1. P. 313–322. https://doi.org/10.1529/biophysj.106.090498
  90. Habimana O., Steenkeste K., Fontaine-Aupart M. P., Bellon-Fontaine M.N., Kulakauskas S., Briandet R. // Appl. Environ. Microbiol. 2011. V. 77. № 1. P. 367–368. https://doi.org/10.1128/AEM.02163-10
  91. Neihaya H. Z., Zaman H. H. // Microb. Pathog. 2018. V. 116. P. 200–208. https://doi.org/10.1016/j.micpath.2018.01.024
  92. Neu T. R., Manz B., Volke F., Dynes J. J., Hitchcock A. P., Lawrence J. R. // FEMS Microbiol. Ecol. 2010. V. 72. № 1. P. 1–21. https://doi.org/10.1111/j.1574-6941.2010.00837.x
  93. Schmitt J., Flemming H.-C. // Water Sci. Technol. 1999. V. 39. № 7. P. 77–82. https://doi.org/10.1016/S0273-1223(99)00153-5
  94. Ramalingam V., Rajaram R., PremKumar C., Santhanam P., Vinothkumar S., Kaleshkumar Dhi K. // J. Basic Microbiol. 2013. V. 53. V. 54. № 9. P. 928–936. https://doi.org/10.1002/jobm.201300514
  95. Stan M. S., Cinteza O. L., Petrescu L., Mernea M. A., Calborean O., Mihailescu D. F., Sima C., Dinischiotu A. // Sci. Rep. 2018. V. 8. № 1. P. 5289. https://d oi.org/10.1038/s41598-018-23621-x
  96. Vandana, Das S. // Carbohydr Polym. 2022. V. 291. P. 119536. https://doi.org/10.1016/j.carbpol.2022.119536.
  97. Fazeli-Nasab B., Sayyed R. Z., Mojahed L. S., Rahmani A. F., Ghafari M., Antoniusf S., Sukamto. // Biocatal. Agric. Biotechnol. 2022. V. 42. P. 102337. https://doi.org/10.1016/j.bcab.2022.102337
  98. Ghosh S., Saha I., Dey A., Lahiri D., Nag M., Sarkar T., Pati S., Rebezov M., Shariati M. A., Thiruvengadam M., Ray R. R. // S. Afr. J. Bot. 2021. V. 151. P. 92–106. https://doi.org/10.1016/j.sajb.2021.11.039.
  99. Fernández-Gómez P., López M., Prieto M., González-Raurich M., Alvarez-Ordóñez A. // Food Res. Int. 2020. V. 136. P. 109508. https://doi.org/10.1016/j.foodres.2020.109508.
  100. Chen M., Cai Y., Li G., Zhao H., An T. // Appl. Catal. B. 2022. V. 307. P. 121200. https://doi.org/10.1016/j.apcatb.2022.121200.
  101. Ali S. G., Ansari M. A., Alzohairy M. A., Alomary M. N., AlYahya S., Jalal M., Khan H. M., Asiri S. M. M., Ahmad W., Mahdi A. A., El-Sherbeeny A. M., El-Meligy M. // Antibiotics. 2020. V. 9. № 3. P. 100. https://doi.org/10.3390/antibiotics9030100
  102. Habimana O., Zanoni M., Vitale S., O’Neill T., Scholz D., Xu B., Casey E. // J. Colloid Interface Sci. 2018. V. 526. P. 419–428. https://doi.org/10.1016/j.jcis.2018.05.014
  103. Zanoni M., Habimana O., Amadio J., Casey E. // Biotechnol. Bioeng. 2016. V. 113. № 3. P. 501–512. https://doi.org/10.1002/bit.25835
  104. Rutherford S. T., Bassler B. L. // Cold Spring Harb. Perspect. Med. 2012. V. 2. № 11. a012427. https://doi.org/10.1101/cshperspect.a012427
  105. Papenfort K., Bassler B. L. // Nat. Rev. Microbiol. 2016. V. 14. № 9. P. 576–588. https://doi.org/10.1038/nrmicro.2016.89
  106. Kim H.-S., Lee S.-H., Byun Y., Park H.-D. // Sci. Rep. 2015. V. 5. № 1. P. 8656. https://doi.org/10.1038/srep08656
  107. Jayaraman A., Wood T. H. // Annu. Rev. Biomed Eng. 2008. V. 10. P. 145–167. https://doi.org/10.1146/annurev.bioeng.10.061807.160536
  108. Fuqua C., Greenberg E. P. // Nat. Rev. Mol. Cell. Biol. 2002. V. 3. P. 685–695. https://doi.org/10.1038/nrm907
  109. Nadell C. D., Xavier J. B., Levin S. A., Foster K. R. // Plos Biol. 2008. V. 6. № 14. P. 171–179. https://doi.org/10.1371/journal.pbio.0060014
  110. Whiteley M., Diggle S. P., Greenberg E. P. // Nature. 2017. V. 555. № 7694. P. 313–320. https://doi.org/10.1038/nature25977
  111. Raffa R. B., Lannuzo J. R., Levine D. R., Saeid K. K., Schwartz R. C., Sucic N. T., Terleckyj O. D., Young J. M. // J. Pharmacol. Exp. Ther. 2005. V. 312. № 2. P. 417–423. https://doi.org/10.1124/jpet.104.075150
  112. Skandamis P. N., Nychas G.J // Appl. Environ. Microbiol. 2012. V. 78. № 16. P. 5473–5482. https://doi.org/10.1128/AEM.00468-12
  113. Kim T. H., Lee I., Yeon K.-M., Kim J. // J. Membr. Sci. 2018. V. 554. P. 357–365. https://doi.org/10.1016/j.memsci.2018.03.020
  114. Qais F. A., Shafiq A., Ahmad I., Husain F. M., Khan R. A., Hassan I. // Microb. Pathog. 2020. V. 144. P. 104172. https://doi.org/10.1016/j.micpath.2020.104172
  115. Ali S. G., Ansari M. A., Khan H. M., Jalal M., Mahdi A. A., Cameotra S. S. // J. Gen. Microbiol. 2016. V. 57. № 3. P. 193–203. https://doi.org/10.1002/jobm.201600175
  116. Singh B. R., Singh B. N., Singh A., Khan W., Naqvi A. H., Singh H. B. // Sci. Rep. 2015. V. 5. № 1. P. 13719. https://doi.org/10.1038/srep13719
  117. Al-Shabib N. A., Husain F. M., Ahmed F., Khan R. A., Ahmad I., Alsharaeh E., Khan M. S., Hussain A., Rehman M. T., Yusuf M., Hassan I., Khan J. M., Ashraf G. M., Alsalme A., Al-Ajmi M. F., Tarasov V. V., Aliev G. // Sci. Rep. 2016. V. 6. № 1. P. 36761. https://doi.org/10.1038/srep36761
  118. Naik K., Kowshik M. // J. Appl. Microbiol. 2014. V. 117. № 4. P. 972–983. https://doi.org/10.1111/jam.12589
  119. Miller K. P., Wang L., Chen Y.-P., Pellechia P. J., Benicewicz B. C., Decho A. W. // Front. Microbiol. 2015. V. 6. https://doi.org/10.3389/fmicb.2015.00189
  120. Пищик В. Н., Воробьев Н. И., Проворов Н. А., Хомяков Ю. В. // Микробиология. 2016. Т. 85. № 3. С. 231–247. https://doi.org/10.7868/S0026365616030113
  121. Shkodenko L., Kassirov I., Koshel E. // Microorganisms. 2020. V. 8. P. 1545. https://doi.org/10.3390/microorganisms8101545
  122. Lara H. H., Ayala-Nuñez N.V., Ixtepan-Turrent L., Rodriguez-Padilla C. // World J. Microbiol. Biotechnol. 2010. V. 26. P. 615–621. https://doi.org/10.1007/s11274-009-0211-3
  123. Salata O. // J. Nanobiotechnology. 2004. V. 2. P. 3. https://doi.org/10.1186/1477-3155-2-3
  124. Crabtree J. H., Burchette R. J., Siddiqi R. A., Huen I. T., Hadnott L. L., Fishman A. // Perit. Dial Int. 2003. V. 23. № 4. P. 368–374. https://doi.org/10.1177/089686080302300410
  125. Khare M. D., Bukhari S. S., Swann A., Spiers P., McLaren I., Myers J. // J. Infect. 2007. V. 54. № 2. P. 146–150. https://doi.org/10.1016/j.jinf.2006.03.002
  126. Jain P., Pradeep T. // Biotechnol. Bioeng. 2005. V. 90. № 1. P. 59–63. https://doi.org/10.1002/bit.20368
  127. Хина А. Г., Крутяков Ю. А. // Прикл. биохимия микробиология. 2021. Т. 57. № 6. С. 523–535.
  128. Крутяков Ю. А., Хина А. Г. // Прикл. биохимия микробиология. 2022. T. 58. № 5. С. 419–433.
  129. Petica A., Gavriliu S., Lungu M., Buruntea N., Panzaru C. // Mater. Sci. Eng. 2008. V. 152. № 1–3. P. 22–27. https://doi.org/10.1016/j.mseb.2008.06.021
  130. Kong H., Jang J. // Langmuir. 2008. V. 24. № 5. P. 2051–2056. https://doi.org/10.1021/la703085e
  131. Gupta A., Silver S. // Nat. Biotechnol. 1998. V. 16. № 10. P. 888–890. https://doi.org/10.1038/nbt1098–888
  132. Matsumura Y., Yoshikata K., Kunisaki S., Tsuchido T. // Appl. Environ. Microbiol. 2003. V. 69. № 7. P. 4278–4281. https://doi.org/10.1128/AEM.69.7.4278-4281.2003
  133. Rai M. K., Deshmukh S. D., Ingle A. P., Gade A. K. // J. Appl. Microbiol. 2012. V. 112. № 5. P. 841–852. https://doi.org/10.1111/j.1365-2672.2012.05253.x
  134. Markowska K., Grudniak A., Wolska K. // Acta Biochim. Pol. 2013. V. 60. № 4. P. 523–530. https://doi.org/10.18388/abp.2013_2016
  135. Monteiro D., Silva S., Negri M., Gorup L., Camargo R., Oliveira R., Barbosa D., Henriques M. // J. Appl. Microbiol. 2013. V. 114. № 4. P. 1175–1183. https://doi.org/10.1111/jam.12102
  136. Lok C. N., Ho C. M., Chen R., He Q. Y., Yu W. Y., Sun H., Tam P. K., Chiu J. F., Che C. M. // J. Proteome Res. 2006. V. 5. № 4. P. 916–924. https://doi.org/10.1021/pr0504079
  137. Smetana A. B., Klabunde K. J., Marchin G. R., Sorensen C. M. // Langmuir. 2018. V. 24. № 14. P. 7457–7464. https://doi.org/10.1021/la800091y
  138. Sondi I., Salopek-Sondi B. // J Colloid Interface Sci. 2004. V. 275. № 1. P. 177–182. https://doi.org/10.1016/j.jcis.2004.02.012
  139. Gogoi S. K., Gopinath P., Paul A., Ramesh A., Ghosh S. S., Chattopadhyay A. // Langmuir 2006. V. 22. № 22. P. 9322–9328. https://doi.org/10.1021/la060661v
  140. Li W. R., Xie X. B., Shi Q. S., Zeng H. Y., Ou-Yang Y.S., Chen Y. B. // Appl. Microbiol. Biotechnol. 2010. V. 85. P. 1115–1122. https://doi.org/10.1007/s00253-009-2159-5
  141. Wu D., Fan W., Kishen A., Gutmann J. L., Fan B. // J. Endod. 2014. V. 40. № 2. P. 285–290. https://doi.org/10.1016/j.joen.2013.08.022
  142. Сухина М. А., Шелыгин Ю. А., Пиядина А. Ю., Фельдман Н. Б., Ананян М. А., Луценко С. В., Фролов С. А. // Колопроктология. 2019. Т. 18. № 3. С. 56–70. https://doi.org/10.33878/2073-7556-2019-18-3-56-70
  143. Schmidt H., Thom M., Madzgalla M., Gerbersdorf S. U., Metreveli G., Manz W. // J. Aquat. Pollut. Toxicol. 2017. V. 1. № 2. P. 9.
  144. Grün A. Y., Meier J., Metreveli G., Schaumann G. E., Manz W. // Environ. Sci. Pollut. Res. 2016. V. 23. № 23. P. 24277–24288. https://doi.org/10.1007/s11356-016-7691-0
  145. Sheng Z., Liu Y. // Water Res. V. 45. № 18. P. 6039–6050. https://doi.org/10.1016/j.watres.2011.08.065
  146. Cui Y., Zhao Y., Tian Y., Zhang W., Lü X., Jiang X. // Biomaterials. 2012. V. 33. № 7. P. 2327–2333. https:// doi.org/10.1016/j.biomaterials.2011.11.057
  147. Piktel E., Suprewicz L., Depciuch J., Chmielewska S., Sklodowski K., Daniluk T., Krol G., Kolat-Brodecka P., Bijak P., Pajor-Swierzy A., Fiedoruk K., Parlinska-Wojtan M., Bucki R. // Sci. Rep. 2021. V. 11. P. 12546. https://doi.org/10.1038/s41598-021-91847-3
  148. Huang Z., Zheng X., Yan D., Yin G., Liao X., Kang Y., Yao Y., Huang D., Hao B. // Langmuir. 2008. V. 24. № 8. P. 4140–4144. https://doi.org/10.1021/la7035949
  149. Hou J., Miao L., Wang C., Wang P., Ao Y., Qian J., Dai S. // J. Hazard. Mater. 2014. V. 276. P. 164–170. https://doi.org/10.1016/j.jhazmat.2014.04.048
  150. Applerot G., Lellouche J., Lipovsky A., Nitzan Y., Lubart R., Gedanken A., Banin E. // Small. 2012. V. 8. № 21. P. 3326–3337. https://doi.org/10.1002/smll.201200772
  151. Megarajan S., Subramaniyan S. B., Prakash S. A., Kamlekar R., Anbazhagan V. // Microb. Pathog. 2019. V. 127. P. 341–346. https://doi.org/10.1016/j.micpath.2018.12.025
  152. Cabral-Romero C., Hernandez-Delgadillo R., Velasco-Arias D., Diaz D., Niño-Arevalo K., Garza-Enriquez M., De la Garza-Ramos M. // Int. J. Nanomedicine. 2012. V. 7. P. 2109–2113. https://doi.org/10.2147/ijn.s29854
  153. Kim J. Y., Park H.-J., Lee C., Nelson K. L., Sedlak D. L., Yoon J. // Appl. Environ. Microbiol. 2010. V. 76. № 22. P. 7668–7670. https://doi.org/10.1128/aem.01009-10
  154. Huang L., Li D.-Q., Lin Y.-J., Wei M., Evans D. G., Duan X. // J. Inorg. Biochem. 2005. V. 153. № 5. P. 986–993. https://doi.org/10.1016/j.jinorgbio.2004.12.022
  155. Maruthupandy M., Rajivgandhi G. N., Quero F., Li W.-J. // J. Environ. Chem. Eng. 2020. V. 8. № 6. P. 104533. https://doi.org/10.1016/j.jece.2020.104533
  156. Boshagh F., Rostami K., Moazami N. // Int. J. Hydrog. Energy. 2019. V. 44. № 28. P. 14395–14405. https://doi.org/10.1016/j.ijhydene.2018.11.199
  157. Halkare P., Punjabi N., Wangchuk J., Nair A., Kondabagil K., Mukherji S. // Sens. Actuators B Chem. 2018. V. 281. P. 643–651. https://doi.org/10.1016/j.snb.2018.10.119
  158. Kuyukina M. S., Glebov G. G., Ivshina I. B. // Nanomaterials (Basel). 2022. V. 12. № 6. P. 951. https://doi.org/10.3390/nano12060951.
  159. Максимова Ю. Г. // Прикл. биохимия и микробиология. 2019. Т. 55. № 1. С. 3–16. https://doi.org/10.1134/S0555109919010100
  160. Guo Z., Xie C., Zhang P., Zhang J., Wang G., He X. et al. // Sci. Total Environ. 2017. V. 580. P. 1300–1308. https://doi.org/doi.org/10.1016/j.scitotenv.2016.12.093
  161. Malek I., Schaber C. F., Heinlein T., Schneider J. J., Gorb S. N., Schmitz R. A. // J. Mater. Chem. B. 2016. V. 4. № 31. P. 5228–5235. https://doi.org/10.1039/C6TB00942E
  162. Levi-Polyachenko N., Young C., MacNeill C., Braden A., Argenta L., Reid S. // Int. J. Hyperthermia. 2014. V. 30. № 7. P. 490–501. https://doi.org/10.3109/02656736.2014.966790
  163. Maksimova Yu. G., Bykova Ya. E., Zorina A. S., Nikulin S. M., Maksimov A. Yu. // Microbiology. 2022. V. 91. № 4. P. 454–462. https://doi.org/10.1134/S0026261722100861
  164. Maksimova Y. G., Bykova Y., Maksimov A. // Microorganisms. 2022. V. 10. № 8. P. 1627. https://doi.org/10.3390/microorganisms1008162
  165. Pantanella F., Berlutti F., Passeri D., Sordi D., Frioni A., Natalizi T. et al. // Interdiscip. Perspect. Infect. Dis. 2011. V. 2011. P. 291513. https://doi.org/10.1155/2011/291513
  166. Максимова Ю. Г., Быкова Я. Е. // Вестник Пермского университета. Серия Биология. 2022. № 2. С. 131–136. https://doi.org/10.17072/1994-9952-2022-2-131-136.
  167. Upadhyayula V. K. K., Gadhamshetty V. // Biotechnol. Adv. 2010. V. 28. № 6. P. 802–816. https://doi.org/10.1016/j.biotechadv.2010.06.006
  168. Liu Q., Zhang C., Bao Y., Dai G. // Appl. Surf. Sci. 2018. V. 443. P. 255–265. https://doi.org/10.1016/j.apsusc.2018.02.120
  169. Lange A., Grzenia A., Wierzbicki M., Strojny-Cieslak B., Kalińska A., Gołębiewski M. et al. // Animals. 2021. V. 11. № 7. P. 1884. https://doi.org/10.3390/ani11071884
  170. Altaf M., Zeyad M. T., Hashmi A., Manoharadas S., Hussain S. A., Ali Abuhasile M. S., Almuzainid M. A. M. // RSC Adv. 2021. V. 11. № 31. P. 19248–19257. https://doi.org/10.1039/D1RA02876F

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Антибиопленочное действие НЧ: а — воздействие на индивидуальные клетки, нарушение клеточной мембраны и формирование АФК; б — воздействие на систему QS, сигнальные молекулы и их синтез; в — проникновение НЧ через матрикс биопленки и нарушение жизнеспособности клеток в сформированной биопленке; г — гибель адгезированных клеток на поверхности с НЧ.

Скачать (338KB)
3. Рис. 2. Пробиопленочное действие НЧ на микроорганизмы: а — агрегация клеток с НЧ и усиление адгезии клеточных агрегатов под действием силы тяжести; б — активация генов RpoS и SoxRS регулона, приводящая к увеличению выработки ЭПС; в — формирование биопленки по принципу “живое на мертвом”; г — увеличение шероховатости, гидрофобности, пористости композитных материалов.

Скачать (250KB)

© Российская академия наук, 2024