Selective limiting concentration of the electrolyte solutions with singly and doubly charged cations

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The effect of the anion exchange layer of the copolymer N,N-diallyl-N,N-dimethylammonium chloride and methyl methacrylate on the electrochemical properties of a homogeneous perfluorosulfopolymer-based cation exchange membrane has been studied. Applying a modifying layer with a thickness of 5 microns to a membrane with a thickness of 215 microns leads to a decrease in electrical conductivity by no more than 35%, while the diffusion permeability decreases by more than 5 times and ceases to depend on concentration.

During membrane testing, similar levels of concentration were achieved in the process of the limiting electrodialysis concentration of sodium chloride solution. The effectiveness of a bilayer membrane for selective electrodialysis concentration was demonstrated. During the concentration of sodium and calcium chlorides mixture, the permselectivity coefficient P(Na+/Ca2+) ranged from 0.5 to 1.2 in the case of using the cation exchange membrane. Using a bilayer membrane led to a significant increase of the permselectivity coefficient, ranging from 1.5 to 2.7, depending on current density. This makes it possible to efficiently separate electrolytes with singly and doubly charged ions.

Texto integral

Acesso é fechado

Sobre autores

N. Kovalchuk

Kuban State University; Platov South-Russian State Polytechnic University (NPI)

Autor responsável pela correspondência
Email: kovol13@yandex.ru
Rússia, Krasnodar; Novocherkassk

A. Minenko

Kuban State University

Email: kovol13@yandex.ru
Rússia, Krasnodar

N. Romanyuk

Kuban State University

Email: kovol13@yandex.ru
Rússia, Krasnodar

N. Smirnova

Platov South-Russian State Polytechnic University (NPI)

Email: kovol13@yandex.ru
Rússia, Novocherkassk

S. Loza

Kuban State University

Email: kovol13@yandex.ru
Rússia, Krasnodar

V. Zabolotsky

Kuban State University

Email: kovol13@yandex.ru
Rússia, Krasnodar

Bibliografia

  1. Al-Amshawee S., Yunus M.Y.B.M., Azoddein A.A.M. et al. // Chem. Eng. J. 2020. V. 380. 122231.
  2. Kabir M.M., Sabur G.M., Akter M.M. et al. // Desalination. 2024. V. 569. 117041.
  3. Shi J., Gong L., Zhang T., Sun S. // Membranes. 2022. V. 12. 767.
  4. Mustafa J., Al-Marzouqi A.H., El-Naas M.H., Ghasem N. // Desalination. 2021. V. 520. 115327.
  5. Turek M. // Desalination. 2003. V. 153. 115327.
  6. AlMadani H.M.N. // Renew. Energy. 2003. V. 28 (12). P. 1915–1924.
  7. Tado K., Sakai F., Sano Y., Nakayama A. // Desalination. 2016. V. 378. P. 60–66.
  8. Yan J., Wang H., Fu R. et al. // Desalination. 2022. V. 531. 115690.
  9. Gurreri L., Tamburini A., Cipollina A., Micale G. // Membranes. 2020. V. 10. 146.
  10. Sun B., Zhang M., Huang S. et al. // Sep. Purif. Technol. 2022. V. 281. 119907.
  11. Li C., Ramasamy D.L., Sillanpää M., Repo E. // Sep. Purif. Technol. 2021. V. 254. 117442.
  12. Kabir M.M., Sabur G.Md., Akter Mst. et al. // Desalination. 2024. V. 569. P. 117041.
  13. Cifuentes L., García I., Arriagada P., Casas J.M. // Sep. Purif. Technol. 2009. V. 68 (1). P. 105–108.
  14. Cerrillo-Gonzalez M. del M., Villen-Guzman. M., Rodriguez-Maroto J.M., Paz-Garcia J.M. // Metals. 2024. V. 14. 134857.
  15. Juve J.-M.A., Christensen F.M.S., Wang. Y., Wei Z. // Chem. Eng. J. 2022. V. 435. 134857.
  16. Havelka J., Fárová H., Jiříček T. et al. // Water Sci. Technol. 2019. V. 79 (8). P. 1580–1586.
  17. Balcik-Canbolat C., Sengezer C., Sakar H. et al. // Environ. Technol. 2020. V. 41 (4). P. 440–449.
  18. Moltedo J.J., Schwarz A., Gonzalez-Vogel A. // J. Environ. Manage, 2022. V. 303. 114104.
  19. Patel S.K., Lee B., Westerhoff P., Elimelech M. // Water. Res. 2024. V. 250. 121009.
  20. Sun B., Zhang M., Huang S. et al. // Desalination. 2021. V. 498. 114793.
  21. Cho Y., Kim K., Ahn J., Lee J. // Metals. 2020. V. 10. 851.
  22. Demin A.V., Zabolotskii V.I. // Russ. J. Electrochem. 2008. V. 44. P. 1058–1064.
  23. Лоза С.А., Романюк Н.А., Фалина И.В., Лоза Н.В. // Мембраны и мембранные технологии. 2023. Т. 13. С. 269–290.
  24. Ge L., Wu B., Li Q. et al. // J. Memb. Sci. 2016. V. 498. P. 192–200.
  25. Hube S., Eskafi M., Hrafnkelsdóttir K.F. // Sci. Total Environ. 2020. V. 710. 136375.
  26. Babilas D., Muszyński J., Milewski A. et al. // Chem. Eng. J. 2021. V. 408. P. 127908.
  27. Luo T., Abdu S., Wessling M. // J. Memb. Sci. 2018. V. 555. P. 429–454.
  28. Ge L., Wu B., Yu D. et al. // Chinese J. Chem. Eng. 2017. V. 25. P. 1606–1615.
  29. Lysova A.A., Manin A.D., Golubenko D.V. et al. // J. Memb. Sci. 2025. V. 716. 123518.
  30. Manin A.D., Golubenko D.V., Yurova P.A., Yaroslavtsev A.B. // Mendeleev Commun. 2023. V. 33. P. 365–367.
  31. Golubenko D.V., Manin A.D., Wang Y. et al. // Desalination. 2022. V. 531. 115719.
  32. Golubenko D.V., Karavanova Y.A., Melnikov S.S. et al. // J. Memb. Sci. 2018. V. 563. P. 777–784.
  33. Karavanova Y.A., Kas’kova Z.M., Veresov A.G., Yaroslavtsev A.B. // Russ. J. Inorg. Chem. 2010. V. 55. P. 479–483.
  34. Li J., Zhou M.-li, Lin J.-yang et al. // J. Memb. Sci. 2015. V. 486. P. 89–96.
  35. Rehman D., Ahdab Y.D., Lienhard J.H. // Water Res. 2021. V. 199. 117171.
  36. Zhang W., Miao M., Pan J. et al. // Desalination. 2017. V. 411. P. 28–37.
  37. Lambert J., Avila-Rodriguez M., Durand G., Rakib M. // J. Memb. Sci. 2006. V. 280 (1–2). P. 219–225.
  38. Sata. T. // J. Memb. Sci. 1994. V. 93 (2). P. 117–135.
  39. Sata T., Sata T., Yang W. // J. Memb. Sci. 2002. V. 206. № 1–2. P. 31–60.
  40. Hosseini S.M., Alibakhshi H., Jashni E.et al. // J. Hazard. Mater. 2020. V. 381. 120884.
  41. Zhao C., Xue J., Ran F., Sun S. // Prog. Mater. Sci. 2013. V. 58, № 1. P. 76–150.
  42. Yurova, P.A.; Stenina, I.A.; Manin, A.D. et al. // Membr. Membr. Technol. 2024. V. 6. P. 55–62.
  43. Zhong S., Cui X., Fu T., Na H. // J. Power Sources. 2008. V. 180. P. 23–28.
  44. Falina I., Loza N., Loza S. et al. // Membranes. 2021. V. 11. 227.
  45. Salehi E., Hosseini S.M., Ansari S., Hamidi A. // J. Solid State Electrochem. 2016. V. 20. P. 371–377.
  46. Stenina I., Golubenko D., Nikonenko V., Yaroslavtsev A. // Int. J. Mol. Sci. 2020. V. 21. 5517.
  47. Pang X., Tao Y., Xu Y.et al. // J. Memb. Sci. 2020. V. 595. 117544.
  48. Kumar P., Suhag S., Mandal J.R., Shahi V.K. // J. Memb. Sci. 2024. V. 711. 123168.
  49. Karavanova Y.A., Fedina K.G., Yaroslavtsev A.B. // Inorg. Mater. 2011. V. 47. P. 329–333.
  50. Melnikov S., Bondarev D., Nosova E. // Membranes. 2020. V. 10. 346.
  51. Bondarev D., Melnikov S., Zabolotskiy V. // J. Memb. Sci. 2023. V. 675. 121510.
  52. Патент N 2807369 Российская Федерация, МПК B01D 71/40 (2006.01), B01D 71/06 (2006.01). Способ получения гомогенной анионообменной мембраны: 2023124254: заявл. 20.09.2023: опубл. 14.11.2023 / Бондарев Д. А., Ачох А. Р., Беспалов А. В., Заболоцкий В. И.
  53. Achoh A., Bondarev D., Melnikov S., Zabolotsky V. // Electrochem. 2024. V. 5. P. 393–406.
  54. Loza S., Loza N., Kutenko N., Smyshlyaev N. // Membranes. 2022. V. 12. 985.
  55. Protasov K.V., Shkirskaya S.A., Berezina N.P., Zabolotskii V.I. // Russ. J. Electrochem. 2010. V. 46. P. 1131–1140.
  56. Stenina I.A., P.A. Yurova, L. Novak et al. // Colloid Polym. Sci. 2021. V. 299. P. 719–728.
  57. Zabolotsky V.I., Achoh A.R., Lebedev K.A., Melnikov S.S. // J. Memb. Sci. 2020. V. 608. P. 118152.
  58. Mareev, S.A.; Evdochenko, E.; Wessling, M. et al. // J. Memb. Sci. 2020. V. 603. 118010.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Structural formula of the copolymer of N,N-diallyl-N,N-dimethylammonium chloride and ethyl methacrylate

Baixar (11KB)
3. Fig. 2. Scheme of the LEDC with non-flow concentration chambers: A – anion exchange membrane; K – cation exchange membrane; EC – electrode chamber; BK – buffer chamber; KO – desalination chamber; KK – concentration chamber.

Baixar (38KB)
4. Fig. 3. Specific electrical conductivity of the original (1) and bilayer (2) membranes in NaCl solutions.

Baixar (13KB)
5. Fig. 4. Concentration dependences of the integral coefficient of diffusion permeability in a NaCl solution for the initial (1) and bilayer (2) membranes.

Baixar (15KB)
6. Fig. 5. Dependence of specific energy consumption on current density with membrane pairs MF4SKl/MA-41 (1) and MF-4SKl5/MA-41 (2).

Baixar (19KB)
7. Fig. 6. Dependence of the potential drop in the sodium chloride solution on the initial (1) and bilayer (2) membrane on the current density

Baixar (16KB)
8. Fig. 8. Dependence of the concentration (a, b) and flux density (c, d) of Na+ (1) and Ca2+ (2) ions in the CC on the current density when using the membrane pair MF-4SKl/MA-41 (a, c) and MF4SKl5/MA-41 (b, d).

Baixar (66KB)
9. Fig. 7. Dependence of the magnitude of the potential drop in a solution of sodium and calcium chlorides on the original (1) and bilayer (2) membrane.

Baixar (11KB)
10. Fig. 9. Dependence of the solvent (water) flow density in the CC on the current density when using the membrane pair MF-4SKl/MA-41 (a) and MF-4SKl5/MA-41 (b).

Baixar (28KB)
11. Fig. 10. Dependence of specific energy consumption on current density when using the membrane pair MF-4SKl/MA-41 (a) and MF-4SKl5/MA-41 (b).

Baixar (23KB)
12. Fig. 11. Volt-ampere characteristic of a cation exchange membrane in a solution of calcium and sodium chlorides for the original (1) and bilayer (2) membranes

Baixar (13KB)
13. Fig. 12. Dependence of the coefficient of specific selective permeability on i/ilim when using the membrane pair MF-4SKl/MA-41 (a) and MF-4SKl5/MA-41 (b).

Baixar (24KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024