MULTIDIMENSIONAL CUBATURES WITH SUPER-POWER CONVERGENCE
- Autores: Belov A.A.1,2, Tintul M.A.1
- 
							Afiliações: 
							- M.V. Lomonosov Moscow State University, Faculty of Physics
- Peoples’ Friendship University of Russia (RUDN University)
 
- Edição: Volume 514 (2023)
- Páginas: 107-111
- Seção: MATHEMATICS
- URL: https://cardiosomatics.ru/2686-9543/article/view/647948
- DOI: https://doi.org/10.31857/S2686954323600118
- EDN: https://elibrary.ru/DAUIMM
- ID: 647948
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
In many applications, multidimensional integrals over the unit hypercube arise, which are calculated using Monte Carlo methods. The convergence of the best of them turns out to be quite slow. In this paper, fundamentally new cubatures with super-power convergence based on the improved Korobov grids and special variable substitution are proposed. A posteriori error estimates are constructed, which are practically indistinguishable from the actual accuracy. Examples of calculations illustrating the advantages of the proposed methods are given.
Palavras-chave
Sobre autores
A. Belov
M.V. Lomonosov Moscow State University, Faculty of Physics; Peoples’ Friendship University of Russia (RUDN University)
							Autor responsável pela correspondência
							Email: aa.belov@physics.msu.ru
				                					                																			                												                								Russian Federation, Moscow; Russian Federation, Moscow						
M. Tintul
M.V. Lomonosov Moscow State University, Faculty of Physics
							Autor responsável pela correspondência
							Email: maksim.tintul@mail.ru
				                					                																			                												                								Russian Federation, Moscow						
Bibliografia
- Калиткин Н.Н., Альшина Е.А. Численные методы. Т. 1. Численный анализ. М.: Академия, 2013.
- Соболь И.М. Численные методы Монте-Карло. М.: Наука, 1975.
- Коробов Н.М. Теоретико-числовые методы в приближенном анализе. М.: Физматгиз, 1963.
- Калиткин Н.Н., Альшин А.Б., Альшина Е.А., Рогов Б.В. Вычисления на квазиравномерных сетках. М.: Физматлит, 2005.
- Демидов С.С. и др. // Чеб. сборник. 2017. Т. 18. № 4. С. 6.
- Коробов Н.М. // ДАН. 1982. Т. 267. № 2. С. 289.
- Гельфанд И.М. и др. // Изв. ВУЗов. Матем. 1958. Т. 6. № 5. С. 32.
- Iri M., Moriguti S., Takasawa Y. // J. Comp. Appl. Math. 1987. V. 17. P. 3.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 


