The magicity, the radii of neutron orbits 1f7/2, 2p3/2 and halo-like structure of 52,54Ca nuclei

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The evolution of neutron single-particle spectra of isotones with N = 32 and 34 new magic neutron numbers in the region 16 ≤ Z ≤ 32 was calculated in the dispersive optical model. It was shown that the minimum of the difference between the Fermi energy and the half-sum of the energy levels of the last predominantly occupied state and the first predominantly unoccupied state is achieved in the magic isotones with N = 32 and 34. The calculated root-mean-square radius of the neutron halo-like state 2p3/2 in double magic 52Ca nucleus exceeded the radius of the underlying 1f7/2 state by 0.8 fm. It is consistent with the recent experimental data and theoretical predictions that explain ‟unexpectedly” large root-mean-square charge radius of this nucleus.

Толық мәтін

Рұқсат жабық

Авторлар туралы

O. Bespalova

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Хат алмасуға жауапты Автор.
Email: besp@sinp.msu.ru
Ресей, Moscow

A. Klimochkina

Lomonosov Moscow State University

Email: besp@sinp.msu.ru

Faculty of Physics

Ресей, Moscow

Әдебиет тізімі

  1. База данных ENSDF, http://www.nndc.bnl.gov/ensdf
  2. A. Gade, R. V. F. Janssens, D. Bazin, R. Broda, B. A. Brown, C. M. Campbell, M. P. Carpenter, J. M. Cook, A. N. Deacon, D.-C. Dinca, B. Fornal, S. J. Freeman, T. Glasmacher, P. G. Hansen, B. P. Kay, P. F. Mantica, et al., Phys. Rev. C 74, 021302(R) (2006).
  3. D. Steppenbeck, S. Takeuchi, N. Aoi, P. Doornenbal, M. Matsushita, H. Wang, H. Baba, N. Fukuda, S. Go, M. Honma, J. Lee, K. Matsui, S. Michimasa, T. Motobayashi, D. Nishimura, T. Otsuka, et al., Nature 502, 207 (2013).
  4. M. Honma, T. Otsuka, B.A. Brown, and T. Mizusaki, Eur. Phys. J. A 25, 499 (2005).
  5. R. F. Garcia Ruiz, M. L. Bissell, K. Blaum, A. Ekström, N. Frömmgen, G. Hagen, M. Hammen, K. Hebeler, J. D. Holt, G. R. Jansen, M. Kowalska, K. Kreim, W. Nazarewicz, R. Neugart, G. Neyens, W. Nörtershäuser, et al., Nature Phys. 12, 594 (2016).
  6. J. Bonnard, S. M. Lenzi, and A. P. Zuker, Phys. Rev. Lett. 116, 212501 (2016).
  7. M. Enciu, H. N. Liu, A. Obertelli, P. Doornenbal, F. Nowacki, K. Ogata, A. Poves, K. Yoshida, N. L. Achouri, H. Baba, F. Browne, D. Calvet, F. Château, S. Chen, N. Chiga, A. Cors, et al., Phys. Rev. Lett. 129, 262501 (2022).
  8. C. Mahaux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991).
  9. M. Wang, W. J. Huang, F. G. Kondev, G. Audi, and S. Naimi, Chin. Phys. C 45, 030003 (2021).
  10. M. Jaminon and C. Mahaux, Nucl. Phys. A 440, 228 (1985).
  11. A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).
  12. О. В. Беспалова, И. Н. Бобошин, В. В. Варламов, Т. А. Ермакова, Б. С. Ишханов, Е. А. Романовский, Т. И. Спасская, Т. П. Тимохина, ЯФ 71, 37 (2008) [O. V. Bespalova, I. N. Boboshin, V. V. Varlamov, T. A. Ermakova, B. S. Ishkhanov, E. A. Romanovsky, T. I. Spasskaya, and T. P. Timokhina, Phys. At. Nucl. 71, 36 (2008)].
  13. О. В. Беспалова, И. Н. Бобошин, В. В. Варламов, Т. А. Ермакова, Б. С. Ишханов, А. А. Климочкина, С. Ю. Комаров, Ч. Коура, Е. А. Романовский, Т. И. Спасская, Изв. РАН. Сер. физ. 74, 575 (2010) [O. V. Bespalova, I. N. Boboshin, V. V. Varlamov, T. A. Ermakova, B. S. Ishkhanov, A. A. Klimochkina, S. Yu. Komarov, H. Koura, E. A. Romanovsky, and T. I. Spasskaya, Bull. Russ. Acad. Sci.: Phys. 74, 542 (2010)].
  14. О. В. Беспалова, Е. А. Романовский, Т. И. Спасская, ЯФ 78, 123 (2015) [O. V. Bespalova, E. A. Romanovsky, and T. I. Spasskaya, Phys. At. Nucl. 78, 118 (2015)].
  15. О. В. Беспалова, А. А. Климочкина, ЯФ 80, 516 (2017) [O. V. Bespalova and A. A. Klimochkina, Phys. At. Nucl. 80, 919 (2017)].
  16. C. D. Pruitt, J. E. Escher, and R. Rahman, Phys. Rev. C 107, 014602 (2023).
  17. О. В. Беспалова, А. А. Климочкина, ЭЧАЯ 53, 428 (2022) [O. V. Bespalova and A. A. Klimochkina, Phys. Part. Nucl. 53, 476 (2022)].
  18. V. Rotival and T. Duguet, Phys. Rev. C 79, 054308 (2009).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Experimental energies (a) and root-mean-square charge radii rch (b) of even Ca isotopes.

Жүктеу (84KB)
3. Fig. 2. Neutron single-particle energies of isotones with N = 32. Light symbols connected by solid lines are calculations with DOP, dashed line is energy EF, dashed lines are energies –Sn(A), –Sn(A + 1). Dark symbols are the result of joint evaluation of data from neutron stripping and pickup reactions on the same nucleus [12, 13].

Жүктеу (84KB)
4. Fig. 3. Experimental energies of isotones with N = 32 (squares) and N = 34 (circles).

Жүктеу (71KB)
5. Fig. 4. The same as in Fig. 2 for isotones with N = 34.

Жүктеу (102KB)
6. Fig. 5. Neutron density ρn(r) (a) and the second derivative of its logarithm (b) for the isotopes 48Ca (dashed curve), 52Ca (solid) and 54Ca (dotted).

Жүктеу (112KB)

© Russian Academy of Sciences, 2024