Antifungal and Reactivation Activity of a Novel Glycine/histidine-rich Linear Peptide from Dog-grass (Elytrigiarepens (L.) Desv. ex Nevski) EARS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Using a combination of solid-phase extraction, affinity chromatography, and analytical reverse-phase HPLC, a new linear peptide was isolated from dog-grass (Elytrigia repens) ears, which does not contain cysteine residues. Identification of its primary structure by Edman automated degradation made it possible to reveal the presence of several polyglycine regions, each consisting of 6–8 residues, between which short fragments consisting of polar amino acid residues are localized. The C-terminal fragment of the molecule is a positively charged site enriched in arginine and histidine residues. The structural features of this peptide determine its functionality. Thus, checking the presence of antimicrobial properties in its recombinant analogue, obtained by heterologous expression in a prokaryotic system, made it possible to determine the MIC for the tested fungal cultures only at sufficiently high active concentrations (52–104 μM). However, this compound had regulatory properties: at a concentration of 25 μM, a reactivating effect was noted, which increased the level of survival of Saccharomyces cerevisiae to UV-irradiation. The data obtained expand the understanding of the functional features of plant defense peptides of an unusual structural type.

作者简介

D. Ryazantsev

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry

编辑信件的主要联系方式.
Email: rea21@list.ru
Russia, 117997, Moscow

E. Khodzhaev

Lomonosov Moscow State University

Email: rea21@list.ru
Russia, 119234, Moscow

A. Kuvarina

Gause Institute New Antibiotics

Email: rea21@list.ru
Russia, 119021, Moscow

A. Barashkova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry

Email: rea21@list.ru
Russia, 117997, Moscow

E. Rogozhin

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry; Gause Institute New Antibiotics

Email: rea21@list.ru
Russia, 117997, Moscow; Russia, 119021, Moscow

参考

  1. van der Weerden N.L., Bleackley M.R., Anderson M.A. // Cell. Mol. Life Sci. 2013. V. 70. № 19.P. 3545–3570. https://doi.org/10.1007/s00018-013-1260-1
  2. Tam J.P., Wang S., Wong K.H., Tan. W.L. // Pharmaceuticals (Basel). 2015. V. 8. № 4. P. 711–757. https://doi.org/10.3390/ph8040711
  3. SarikaIquebal M.A., Rai A. // Peptides. 2012. V. 36. № 2. P. 322–330. https://doi.org/10.1016/j.peptides.2012.05.012
  4. Das K., Datta K., Karmakar S., Datta S.K. // Protein Pept. Lett.2019. V. 26. № 10. P. 720–742. https://doi.org/10.2174/0929866526666190619112438
  5. Stec B. // Cell. Mol. Life Sci. 2006. V. 63. № 12. P. 1370–1385. https://doi.org/10.1007/s00018-005-5574-5
  6. Parisi K., Shafee T.M.A., Quimbar P., van der Weerden N.L., Bleackley M.R., Anderson M.A. // Semin.Cell. Dev. Biol. 2019. V. 88. P. 107–118. https://doi.org/10.1016/j.semcdb.2018.02.004
  7. Рогожин Е.А., Одинцова Т.И., Мусолямов А.Х., Смирнов А.Н., Бабаков А.В., Егоров Ц.А., Гришин Е.В. // Прикл. биохимия и микробиология. 2009. Т. 45. № 4. С. 403–409.
  8. Рязанцев Д.Ю., Рогожин Е.А., Цветков В.О., Яруллина Л.Г., Смирнов А.Н., Завриев С.К. // Доклады Академии Наук. 2019. Т. 484. № 1. С. 104–106.
  9. Odintsova T.I., Rogozhin E.A., Baranov Yu.V., Musolyamov A.Kh., Yalpani N., Egorov Ts.A., Grishin E.V. // Biochimie. 2008. V. 90. P. 1667–1673. https://doi.org/10.1016/j.biochi.2008.06.007
  10. Уткина Л.Л., Жабон Е.О., Славохотова А.А., Рогожин Е.А., Шиян А.А., Гришин Е.В., Егоров Ц.А., Одинцова Т.И., Пухальский В.А. // Генетика. 2010. Т. 46. № 12. С. 1–7.
  11. Slavokhotova A.A., Shelenkov A.A., Odintsova T.I. // Plant Mol. Biol. 2015. V. 89. № 3. P. 203–214. https://doi.org/10.1007/s11103-015-0346-6
  12. Odintsova T.I., Slezina M.P., Istomina E.A. // Biomolecules. 2020. V. 10. № 7. E. 1029. https://doi.org/10.3390/biom10071029
  13. Koetter U., Kaloga M., Schilcher H. // Part I. Planta Med. 1993. V. 59. № 3. P. 279–280. https://doi.org/10.1055/s-2006-959672
  14. Beydokthi S.S., Sendker J., Brandt S., Hensel A. // Fitoterapia. 2017. V. 117. P. 22–27. https://doi.org/10.1016/j.fitote.2016.12.010
  15. Кароматов И.Д. // Биология и интегративная медицина. 2017. № 6. С. 122–128.
  16. Provencher S.W., Glöckner J. // Biochemistry. 1981. V. 20. № 1. P. 33–37. https://doi.org/10.1021/bi00504a006
  17. Andreev Y.A., Kozlov S.A., Vassilevski A.A., Grishin E.V. // Anal. Biochem. 2010. V. 407. № 1. P. 144–146. https://doi.org/10.1016/j.ab.2010.07.023
  18. Воробьева Л.И., Рогожин Е.А., Ходжаев Е.Ю., Володяшкин Р.А., Самойленко В.А. // Микробиология. 2017. Т. 86. № 6. С. 684–695.
  19. Barashkova A.S., Rogozhin E.A. // BMC Plant Methods. 2020. V. 16. E. 143. https://doi.org/10.1186/s13007-020-00687-1
  20. Park C.J., Park C.B., Hong S.S., Lee H.S., Lee S.Y., Kim S.C. // Plant Mol. Biol. 2000. V. 44. № 2. P. 187–197. https://doi.org/10.1023/a:1006431320677
  21. Hilton H., Gaut B.S. // Genetics. 1998. V. 150. № 2. P. 863–872. https://doi.org/10.1093/genetics/150.2.863
  22. Gorinstein S., Jaramillo N.O., Medina O.J., Rogriques W.A., Tosello G.A., Paredes-Lopez O. // J. Protein Chem. 1999. V. 18. № 6. P. 687–693. https://doi.org/10.1023/a:1020610424625
  23. Czolpinska M., Rurek M. // Front Plant. Sci. 2018. V. 8. № 9. E. 302. https://doi.org/10.3389/fpls.2018.00302
  24. Pelegrini P.B., Murad A.M., Silva L.P., Dos Santos R.C., Costa F.T., Tagliari P.D. et al. // Peptides. 2008. V. 29. № 8. P. 1271–1279. https://doi.org/10.1016/j.peptides.2008.03.013
  25. Remuzgo C., Oewel T.S., Daffre S., Lopes T.R., Dyszy F.H., Schreier S. et al. // Amino Acids. 2014. V. 46. № 11. P. 2573–2586. https://doi.org/10.1007/s00726-014-1811-2
  26. Рогожин Е.А., Воробьева Л.И., Ходжаев Е.Ю., Герасимов Е.С. // Микробиология. 2019. Т. 88. № 2. С. 137–143.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (124KB)
3.

下载 (128KB)
4.

下载 (140KB)
5.

下载 (818KB)

版权所有 © Д.Ю. Рязанцев, Е.Ю. Ходжаев, А.Е. Куварина, А.С. Барашкова, Е.А. Рогожин, 2023